15 research outputs found
The role of Helium-3 impurities in the stress induced roughening of superclimbing dislocations in solid Helium-4
We analyze the stress induced and thermally assisted roughening of a forest
of superclimbing dislocations in a Peierls potential in the presence of
Helium-3 impurities and randomly frozen in static stresses. It is shown that
the temperature of the dip in the flow rate observed by Ray and Hallock
(Phys.Rev. Lett. {\bf 105}, 145301 (2010)) is determined by the energy of the
impurity activation from dislocation core. However, it is suppressed by,
essentially, the logarithm of the impurity fraction. The width of the dip is
determined by inhomogeneous fluctuations of the stresses and is shown to be
much smaller than .Comment: Submitted to the LT26-conference proceeding
Stress induced dislocation roughening -- phase transition in 1d at finite temperature
We present an example of a generically forbidden phase transition in 1d at
finite temperature -- stress induced and thermally assisted roughening of a
superclimbing dislocation in a Peierls potential. We also argue that such
roughening is behind the strong suppression of the superflow through solid \he4
in a narrow temperature range recently observed by Ray and Hallock (Phys.Rev.
Lett. {\bf 105}, 145301 (2010)).Comment: 4 revtex pages, 5 figures. Replaced with the published versio
Main directions to increas biogas production for organic wastes management
Main analysis of efficiency of biogas production from organic waste in the frame of pretreatment are presented in the article
Glide and Superclimb of Dislocations in Solid He
Glide and climb of quantum dislocations under finite external stress,
variation of chemical potential and bias (geometrical slanting) in Peierls
potential are studied by Monte Carlo simulations of the effective string model.
We treat on unified ground quantum effects at finite temperatures . Climb at
low is assisted by superflow along dislocation core -- {\it superclimb}.
Above some critical stress avalanche-type creation of kinks is found. It is
characterized by hysteretic behavior at low . At finite biases gliding
dislocation remains rough even at lowest -- the behavior opposite to
non-slanted dislocations. In contrast to glide, superclimb is characterized by
quantum smooth state at low temperatures even for finite bias. In some
intermediate -range giant values of the compressibility as well as
non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6
figure
BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid He
We report results of torsional oscillator (TO) experiments on solid He at
temperatures above 1K. We have previously found that single crystals, once
disordered, show some mobility (decoupled mass) even at these rather high
temperatures. The decoupled mass fraction with single crystals is typically 20-
30%. In the present work we performed similar measurements on polycrystalline
solid samples. The decoupled mass with polycrystals is much smaller, 1%,
similar to what is observed by other groups. In particular, we compared the
properties of samples grown with the TO's rotation axis at different
orientations with respect to gravity. We found that the decoupled mass fraction
of bcc samples is independent of the angle between the rotation axis and
gravity. In contrast, hcp samples showed a significant difference in the
fraction of decoupled mass as the angle between the rotation axis and gravity
was varied between zero and 85 degrees. Dislocation dynamics in the solid
offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics
- special issue on Supersolidit
Interplay of non-linear elasticity and dislocation-induced superfluidity in solid Helium-4
The mechanism of the roughening induced partial depinning of gliding
dislocations from Helium-3 impurities is proposed as an alternative to the
standard "boiling off". We give a strong argument that Helium-3 remains bound
to dislocations even at large temperatures due to very long equilibration
times. A scenario leading to the similarity between elastic and superfluid
responses of solid Helium-4 is also discussed. Its main ingredient is a strong
suppression of the superfluidity along dislocation cores by dislocation kinks
(D. Aleinikava, et. al., arXiv:0812.0983). These kinks, on one hand, determine
the temperature and Helium-3 dependencies of the generalized shear modulus and,
on the other hand, control the superfluid response. Several proposals for
theoretical and experimental studies of solid Helium-4 are suggested.Comment: final version accepted to the special JLTP issue on Supersolid, 16
pages, 6 figures: typos corrected, more explanations give
Main directions to increas biogas production for organic wastes management
Main analysis of efficiency of biogas production from organic waste in the frame of pretreatment are presented in the article
Dislocation roughening in quantum crystals
We address generic behavior of quantum dislocations in almost ideal crystals. It is proven that the combination of arbitrary small Peierls potential and Coulomb-type elastic interaction between dislocation kinks prevents quantum roughening of dislocations. Thermally created kinks induce classical roughening which leads to softening of crystal shear modulus at temperatures comparable to the kink energy. This effect is discussed in the context of the shear modulus softening observed by Day & Beamish in solid 4He
