729 research outputs found

    REM near-IR and optical photometric monitoring of Pre-Main Sequence Stars in Orion

    Full text link
    We performed an intensive photometric monitoring of the PMS stars falling in a field of about 10x10 arc-minutes in the vicinity of the Orion Nebula Cluster (ONC). Photometric data were collected between November 2006 and January 2007 with the REM telescope in the VRIJHK' bands. The largest number of observations is in the I band (about 2700 images) and in J and H bands (about 500 images in each filter). From the observed rotational modulation, induced by the presence of surface inhomogeneities, we derived the rotation periods for 16 stars and improved previous determinations for the other 13. The analysis of the spectral energy distributions and, for some stars, of high-resolution spectra provided us with the main stellar parameters (luminosity, effective temperature, mass, age, and vsini). We also report the serendipitous detection of two strong flares in two of these objects. In most cases, the light-curve amplitudes decrease progressively from the R to H band as expected for cool starspots, while in a few cases, they can only be modelled by the presence of hot spots, presumably ascribable to magnetospheric accretion. The application of our own spot model to the simultaneous light curves in different bands allowed us to deduce the spot parameters and particularly to disentangle the spot temperature and size effects on the observed light curves.Comment: 29 pages, 24 figure

    Beyond behavior: Linguistic evidence of cultural variation in parental ethnotheories of children’s prosocial helping

    Get PDF
    This study examined linguistic patterns in mothers’ reports about their toddlers’ involvement in everyday household work, as a way to understand the parental ethnotheories that may guide children’s prosocial helping and development. Mothers from two cultural groups – US Mexican-heritage families with backgrounds in indigenous American communities and middle-class European-American families – were interviewed regarding how their 2- to 3-year-old toddler gets involved in help with everyday household work. The study’s analytic focus was the linguistic form of mothers’ responses to interview questions asking about the child’s efforts to help with a variety of everyday household work tasks. Results showed that mothers responded with linguistic patterns that were indicative of ethnotheoretical assumptions regarding children’s agency and children’s prosocial intentions, with notable contrasts between the two cultural groups. Nearly all US Mexican-heritage mothers reported children’s contributions and participation using linguistic forms that centered children’s agency and prosocial initiative, which corresponds with extensive evidence suggesting the centrality of both children’s autonomy and supportive prosocial expectations in how children’s helpfulness is socialized in this and similar cultural communities. By contrast, middle-class European-American mothers frequently responded to questions about their child’s efforts to help with linguistic forms that “pivoted” to either the mother as the focal agent in the child’s prosocial engagement or to reframing the child’s involvement to emphasize non-help activities. Correspondence between cultural differences in the linguistic findings and existing literature on socialization of children’s prosocial helping is discussed. Also discussed is the analytic approach of the study, uncommon in developmental psychology research, and the significance of the linguistic findings for understanding parental ethnotheories in each community

    Connection between jets, winds and accretion in T Tauri stars: the X-shooter view

    Get PDF
    We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12} to 10^{-7} Mo/yr. The line profile was deconvolved into a low velocity component (LVC, 40 km/s ), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The [OI]6300 luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. Lstar , Mstar , Lacc , Macc), with similar slopes for the two components. The line luminosity correlates better with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass loss rates measured from the HVC span from ~ 10^{-13} to ~10^{-7} Mo/yr. The corresponding Mloss/Macc ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase.Comment: 15 pages, 14 figures, Accepted for publication in A&

    A new Classical T Tauri object at the sub-stellar boundary in Chamaeleon II

    Full text link
    We have obtained low- and medium-resolution optical spectra of 20 candidate young low-mass stars and brown dwarfs in the nearby Chamaeleon II dark cloud, using the Magellan Baade telescope. We analyze these data in conjunction with near-infrared photometry from the 2-Micron All Sky Survey. We find that one target, [VCE2001] C41, exhibits broad H(alpha) emission as well as a variety of forbidden emission lines. These signatures are usually associated with accretion and outflow in young stars and brown dwarfs. Our spectra of C41 also reveal LiI in absorption and allow us to derive a spectral type of M5.5 for it. Therefore, we propose that C41 is a classical T Tauri object near the sub-stellar boundary. Thirteen other targets in our sample have continuum spectra without intrinsic absorption or emission features, and are difficult to characterize. They may be background giants or foreground field stars not associated with the cloud or embedded protostars, and need further investigation. The six remaining candidates, with moderate reddening, are likely to be older field dwarfs, given their spectral types, lack of lithium and H(alpha).Comment: Astrophysical Journal, accepted June 19, 200

    X-Shooter study of accretion in Chamaeleon I: II. A steeper increase of accretion with stellar mass for very low mass stars?

    Get PDF
    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Shooter spectrograph. The sample is nearly complete down to M~0.1Msun for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broad-band flux-calibrated medium resolution spectrum. The correlation between the accretion luminosity to the stellar luminosity, and of the mass accretion rate to the stellar mass in the logarithmic plane yields slopes of 1.9 and 2.3, respectively. These slopes and the accretion rates are consistent with previous results in various star forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity smaller than ~0.45 Lsun and for stellar masses smaller than ~ 0.3 Msun, is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane empty of objects. One at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second one is just above the observational limits imposed by chromospheric emission. This empty region is located at M~0.3-0.4Msun, typical masses where photoevaporation is known to be effective, and at mass accretion rates ~10^-10 Msun/yr, a value compatible with the one expected for photoevaporation to rapidly dissipate the inner disk.Comment: Accepted for publication on Astronomy & Astrophysics. Abstract shortened for arxiv constraints. Revised version after language editin

    Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants

    Get PDF
    Extensive surveys of star-forming regions with Spitzer have revealed populations of disk-bearing young stellar objects. These have provided crucial constraints, such as the timescale of dispersal of protoplanetary disks, obtained by carefully combining infrared data with spectroscopic or X-ray data. While observations in various regions agree with the general trend of decreasing disk fraction with age, the Lupus V and VI regions appeared to have been at odds, having an extremely low disk fraction. Here we show, using the recent Gaia data release 2 (DR2), that these extremely low disk fractions are actually due to a very high contamination by background giants. Out of the 83 candidate young stellar objects (YSOs) in these clouds observed by Gaia, only five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and have similar proper motions to other members in this star-forming complex. Of these five targets, four have optically thick (Class II) disks. On the one hand, this result resolves the conundrum of the puzzling low disk fraction in these clouds, while, on the other hand, it further clarifies the need to confirm the Spitzer selected diskless population with other tracers, especially in regions at low galactic latitude like Lupus V and VI. The use of Gaia astrometry is now an independent and reliable way to further assess the membership of candidate YSOs in these, and potentially other, star-forming regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter
    • …
    corecore