773 research outputs found
The 2015 superoutburst of QZ Virginis: Detection of growing superhumps between the precursor and main superoutburst
We report on time-resolved photometry of the 2015 February-March
superoutburst of QZ Virginis. The superoutburst consisted of a separated
precursor, main superoutburst, and rebrightening. We detected superhumps with a
period of 0.061181(42) d between the precursor and main superoutburst. Based on
analyses of period changes and amplitudes of superhumps, the observed
superhumps were identified as growing superhumps (stage A superhumps). The
duration of stage A superhumps was about 5 d, unusually long for SU UMa-type
dwarf novae. Using the obtained stage A superhump period, we estimated the mass
ratio of QZ Vir to be 0.108(3). This value suggests that QZ Vir is an SU
UMa-type dwarf nova evolving toward the period minimum. Based on the present
and the previous observations regarding long-lasting stage A superhumps, a time
scale of stage A superhumps is likely to be determined by the mass ratio of the
system and the temperature of the accretion disk.Comment: 12 pages, 6 figures, published for PASJ, 69, 7
Pressure Evolution of the Ferromagnetic and Field Re-entrant Superconductivity in URhGe
Fine pressure () and magnetic field () tuning on the ferromagnetic
superconductor URhGe are reported in order to clarify the interplay between the
mass enhancement, low field superconductivity (SC) and field reentrant
superconductivity (RSC) by electrical resistivity measurements. With increasing
, the transition temperature and the upper critical field of the low field
SC decrease slightly, while the RSC dome drastically shifts to higher fields
and shrinks. The spin reorientation field also increases. At a
pressure GPa, the RSC has collapsed while the low field SC persists
and may disappear only above 4 GPa. Via careful studies of the
inelastic resistivity term, it is demonstrated that this drastic change
is directly related with the dependence of the effective mass which
determines the critical field of the low field SC and RSC on the basis of
triplet SC without Pauli limiting field.Comment: 5 pages, 6 figures, to appear in Journal of the Physical Society of
Japa
Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures
We investigated the non centrosymmetric superconductors CePtSi and UIr by
the ac heat capacity measurement under pressures. We determined the pressure
phase diagrams of these compounds. In CePtSi, the N\'{e}el temperature
= 2.2 K decreases with increasing pressure and becomes zero at the
critical pressure 0.6 GPa. On the other hand, the
superconducting phase exists in a wider pressure region from ambient pressure
to 1.5 GPa. The phase diagram of CePtSi is very
unique and has never been reported before for other heavy fermion
superconductors. In UIr, the heat capacity shows an anomaly at the Curie
temperature = 46 K at ambient pressure, and the heat capacity
anomaly shifts to lower temperatures with increasing pressure. The present
pressure dependence of was consistent with the previous studies by
the resistivity and magnetization measurements. Previous ac magnetic
susceptibility and resistivity measurements suggested the existence of three
ferromagnetic phases, FM1-3. shows a bending structure at 1.98,
2.21, and 2.40 GPa .The temperatures where these anomalies are observed are
close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel
Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29
2006, Fukuoka Japa
Coexistence of Ferromagnetism and Superconductivity in Noncentrosymmetric Materials with Cubic Symmetry
This is a model study for the emergence of superconductivity in
ferromagnetically ordered phases of cubic materials whose crystal structure
lacks inversion symmetry. A Ginzburg-Landau-type theory is used to find the
ferromagnetic state and to determine the coupling of magnetic order to
superconductivity. It is found that noncentrosymmetricity evokes a helical
magnetic phase. If the wavelength of the magnetic order is long enough, it
gives rise to modulations of the order parameter of superconductivity, both in
modulus and complex phase. At magnetic domain walls the nucleation of
superconductivity is found to be suppressed as compared to the interior of
ferromagnetic domains.Comment: 5 pages, 2 figure
Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe
Unambiguous evidence for the microscopic coexistence of ferromagnetism and
superconductivity in UCoGe ( K and
0.6 K) is reported from Co nuclear quadrupole resonance (NQR). The
Co-NQR signal below 1 K indicates ferromagnetism throughout the sample
volume, while nuclear spin-lattice relaxation rate in the ferromagnetic
(FM) phase decreases below due to the opening of the
superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive
of a self-induced vortex state, potentially realizable in a FM superconductor.
In addition, the Co-NQR spectrum around show that the FM
transition in UCoGe possesses a first-order character, which is consistent with
the theoretical prediction that the low-temperature FM transition in itinerant
magnets is generically of first-order.Comment: 5 pages, 5 figure
Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies
Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)
studies were performed in the recently discovered UCoGe, in which the
ferromagnetic and superconducting (SC) transitions were reported to occur at
K and K (N. T. Huy {\it et al.}, Phys.
Rev. Lett. {\bf 99} (2007) 067006), in order to investigate the coexistence of
ferromagnetism and superconductivity as well as the normal-state and SC
properties from a microscopic point of view. From the nuclear spin-lattice
relaxation rate and Knight-shift measurements, we confirmed that
ferromagnetic fluctuations which possess a quantum critical character are
present above and the occurrence of ferromagnetic transition at
2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal
state show that UCoGe is an itinerant ferromagnet similar to ZrZn and
YCo. The onset SC transition was identified at K, below
which of 30 % of the volume fraction starts to decrease due to the
opening of the SC gap. This component of , which follows a
dependence in the temperature range of K, coexists with the
magnetic components of showing a dependence below .
From the NQR measurements in the SC state, we suggest that the self-induced
vortex state is realized in UCoGe.Comment: 5 pages, 7 figures. submitted to J. Phys. Soc. Jpn. To appear in J.
Phys. Soc. Jp
Double-Exchange Ferromagnetism and Orbital-Fluctuation-Induced Superconductivity in Cubic Uranium Compounds
A double-exchange mechanism for the emergence of ferromagnetism in cubic
uranium compounds is proposed on the basis of a - coupling scheme. The
idea is {\it orbital-dependent duality} of electrons concerning itinerant
and localized states in the cubic structure. Since
orbital degree of freedom is still active in the ferromagnetic phase,
orbital-related quantum critical phenomenon is expected to appear. In fact,
odd-parity p-wave pairing compatible with ferromagnetism is found in the
vicinity of an orbital ordered phase. Furthermore, even-parity d-wave pairing
with significant odd-frequency components is obtained. A possibility to observe
such exotic superconductivity in manganites is also discussed briefly.Comment: 4 pages, 4 figures. To appear in J. Phys. Soc. Jp
Nonuniform Spin Triplet Superconductivity due to Antisymmetric Spin-Orbit Coupling in Noncentrosymmetric Superconductor CePtSi
We show that the nonuniform state (Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
state) of the spin triplet superconductivity in noncentrosymmetric systems is
stabilized by antisymmetric spin-orbit coupling even if the magnetic field is
absent. The transition temperature of the spin triplet superconductivity is
reduced by the antisymmetric spin-orbit coupling in general. This pair breaking
effect is shown to be similar to the Pauli pair breaking effect due to magnetic
field for the spin singlet superconductivity, in which FFLO state is stabilized
near the Pauli limit (or Chandrasekhar-Clogston limit) of external magnetic
field. Since there are gapless excitations in nonuniform superconducting state,
some physical quantities such as specific heat and penetration depth should
obey the power low temperature-dependences. We discuss the possibility of the
realization of nonuniform state in CePtSi.Comment: 8 pages, 6 figure
Nodal Structure of Unconventional Superconductors Probed by the Angle Resolved Thermal Transport Measurements
Over the past two decades, unconventional superconductivity with gap symmetry
other than s-wave has been found in several classes of materials, including
heavy fermion (HF), high-T_c, and organic superconductors. Unconventional
superconductivity is characterized by anisotropic superconducting gap
functions, which may have zeros (nodes) along certain directions in the
Brillouin zone. The nodal structure is closely related to the pairing
interaction, and it is widely believed that the presence of nodes is a
signature of magnetic or some other exotic, rather than conventional
phonon-mediated, pairing mechanism. Therefore experimental determination of the
gap function is of fundamental importance. However, the detailed gap structure,
especially the direction of the nodes, is an unresolved issue in most
unconventional superconductors. Recently it has been demonstrated that the
thermal conductivity and specific heat measurements under magnetic field
rotated relative to the crystal axes are a powerful method for determining the
shape of the gap and the nodal directions in the bulk. Here we review the
theoretical underpinnings of the method and the results for the nodal structure
of several unconventional superconductors, including borocarbide YNiBC,
heavy fermions UPdAl, CeCoIn, and PrOsSb, organic
superconductor, -(BEDT-TTF)Cu(NCS), and ruthenate
SrRuO, determined by angular variation of the thermal conductivity and
heat capacity.Comment: topical review, 55 pages, 35 figures. Figure quality has been reduced
for submission to cond-mat, higher quality figures available from the authors
or from the publishe
- …
