research

Coexistence of Ferromagnetism and Superconductivity in Noncentrosymmetric Materials with Cubic Symmetry

Abstract

This is a model study for the emergence of superconductivity in ferromagnetically ordered phases of cubic materials whose crystal structure lacks inversion symmetry. A Ginzburg-Landau-type theory is used to find the ferromagnetic state and to determine the coupling of magnetic order to superconductivity. It is found that noncentrosymmetricity evokes a helical magnetic phase. If the wavelength of the magnetic order is long enough, it gives rise to modulations of the order parameter of superconductivity, both in modulus and complex phase. At magnetic domain walls the nucleation of superconductivity is found to be suppressed as compared to the interior of ferromagnetic domains.Comment: 5 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions