This is a model study for the emergence of superconductivity in
ferromagnetically ordered phases of cubic materials whose crystal structure
lacks inversion symmetry. A Ginzburg-Landau-type theory is used to find the
ferromagnetic state and to determine the coupling of magnetic order to
superconductivity. It is found that noncentrosymmetricity evokes a helical
magnetic phase. If the wavelength of the magnetic order is long enough, it
gives rise to modulations of the order parameter of superconductivity, both in
modulus and complex phase. At magnetic domain walls the nucleation of
superconductivity is found to be suppressed as compared to the interior of
ferromagnetic domains.Comment: 5 pages, 2 figure