688 research outputs found
Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces
We present first-principles calculations of the magnetic hyperfine fields H
of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the
dependence of H on the coordination number by placing the impurity in the
surfaces, on top of them at the adatom positions, and in the bulk. We find a
strong coordination dependence of H, different and characteristic for each
impurity. The behavior is explained in terms of the on-site s-p hybridization
as the symmetry is reduced at the surface. Our results are in agreement with
recent experimental findings.Comment: 4 pages, 3 figure
4′-Amino-2,2′′-dioxo-2,2′′,3,3′′-tetrahydro-1H-indole-3-spiro-1′-cyclopent-3′-ene-2′-spiro-3′′-1H-indole-3′,5′,5′-tricarbonitrile dihydrate
In the title compound, C22H12N6O2·2H2O, the cyclopentene ring adopts an envelope conformation, with the spiro C atom bonded to the dicyano-substituted C atom deviating by 0.437 (2) Å from the plane of the remaining four atoms in the ring. The puckering and smallest displacement asymmetry parameters for the ring are q
2 = 0.275 (2) Å, ϕ = 212.4 (4)° and Δs(C2) = 2.7 (2). The dihedral angle between the two indole groups is 60.1 (1)°. The structure contains intermolecular N—H⋯O hydrogen bonds involving the indole groups and O—H⋯O and O—H⋯N hydrogen bonds involving the water molecules
Surface Half-Metallicity of CrAs in the Zinc-Blende Structure
The development of new techniques such as the molecular beam epitaxy have
enabled the growth of thin films of materials presenting novel properties.
Recently it was made possible to grow a CrAs thin-film in the zinc-blende
structure. In this contribution, the full-potential screened KKR method is used
to study the electronic and magnetic properties of bulk CrAs in this novel
phase as well as the Cr and As terminated (001) surfaces. Bulk CrAs is found to
be half-ferromagnetic for all three GaAs, AlAs and InAs experimental lattice
constants with a total spin magnetic moment of 3 . The Cr-terminated
surface retains the half-ferromagnetic character of the bulk, while in the case
of the As-termination the surface states destroy the gap in the minority-spin
band.Comment: 4 pages, 2 figures, new text, new titl
Ferromagnetism in laser deposited anatase TiCoO_{2-\delta} films
Pulsed laser deposited films of Co doped anatase TiO2 are examined for Co
substitutionality, ferromagnetism, transport, magnetotransport and optical
properties. Our results show limited solubility (up to ~ 2 %) of Co in the
as-grown films and formation of Co clusters thereafter. For Ti0.93Co0.07O2-d
sample, which exhibits a Curie temperature (Tc) over 1180 K, we find the
presence of 20-50 nm Co clusters as well as a small concentration of Co
incorporated into the remaining matrix. After being subjected to the high
temperature anneal during the first magnetization measurement, the very same
sample shows a Tc ~ 650 K and almost full matrix incorporation of Co. This Tc
is close to that of as-grown Ti0.99Co0.01O2-d sample (~ 700 K). The transport,
magnetotransport and optical studies also reveal interesting effects of the
matrix incorporation of Co. These results are indicative of an intrinsic
Ti1-xCoxO2-d diluted magnetic semiconductor with Tc of about 650-700 K.Comment: 14 pages + 9 figure
Proper weak-coupling approach to the periodic s-d(f) exchange model
The periodic s-d(f) exchange model is characterized by a wide variety of
interesting applications, a simple mathematical structure and a limited number
of reliable approximations which take care of the quantum nature of the
participating spins. We suggest the use of a projection-operator method for
getting information perturbationally, which are not accessible via diagrammatic
approaches. In this paper we present in particular results beyond perturbation
theory, which are obtained such that almost all exactly known limiting cases
are incorporated correctly. We discuss a variety of possible methods and
evaluate their consequences for one-particle properties. These considerations
serve as a guideline for a more effective approach to the model.Comment: 11 pages, 6 figures; accepted by Phys. Rev.
Half-metallic Antiferromagnet BaCrFeAs2
First-principles calculations and a tight-binding analysis predict that the
iron-pnictide BaCrFeAs2 is a promising candidate for half-metallic material
with fully-compensated magnetization. The transition-metal ions Cr and Fe
prefer the three-dimensional intervening lattice, which yields the
antiferromagnetic order of spin orientations. Due to the difference between Cr
and Fe in the electronegativity, a band gap is opened at the Fermi level in the
spin channel in which Fe provides the majority carriers. The selective
hybridization between 3d orbitals of Cr and As:4p states due to the peculiar
lattice structure of the iron-pnictide is shown to be crucial for the novel
properties.Comment: added reference
Polaron percolation in diluted magnetic semiconductors
We theoretically study the development of spontaneous magnetization in
diluted magnetic semiconductors as arising from a percolation of bound magnetic
polarons. Within the framework of a generalized percolation theory we derive
analytic expressions for the Curie temperature and the magnetization, obtaining
excellent quantitative agreement with Monte Carlo simulation results and good
qualitative agreement with experimental results.Comment: 5 page
A search for ferromagnetism in transition-metal-doped piezoelectric ZnO
We present the results of a computational study of ZnO in the presence of Co
and Mn substitutional impurities. The goal of our work is to identify potential
ferromagnetic ground states within the (Zn,Co)O or (Zn,Mn)O material systems
that are also good candidates for piezoelectricity. We find that, in contrast
to previous results, robust ferromagnetism is not obtained by substitution of
Co or Mn on the Zn site, unless additional carriers (holes) are also
incorporated. We propose a practical scheme for achieving such -type doping
in ZnO
First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As
The properties of diluted GaMnAs are calculated for a wide range
of Mn concentrations within the local spin density approximation of density
functional theory. M\"ulliken population analyses and orbital-resolved
densities of states show that the configuration of Mn in GaAs is compatible
with either 3d or 3d, however the occupation is not integer due to the
large - hybridization between the Mn states and the valence band of
GaAs. The spin splitting of the conduction band of GaAs has a mean field-like
linear variation with the Mn concentration and indicates ferromagnetic coupling
with the Mn ions. In contrast the valence band is antiferromagnetically coupled
with the Mn impurities and the spin splitting is not linearly dependent on the
Mn concentration. This suggests that the mean field approximation breaks down
in the case of Mn-doped GaAs and corrections due to multiple scattering must be
considered. We calculate these corrections within a simple free electron model
and find good agreement with our {\it ab initio} results if a large exchange
constant (eV) is assumed.Comment: 15 pages, 14 figure
- …