30,343 research outputs found
On wavenumber spectra for sound within subsonic jets
This paper clarifies the nature of sound spectra within subsonic jets. Three
problems, of increasing complexity, are presented. Firstly, a point source is
placed in a two-dimensional plug flow and the sound field is obtained
analytically. Secondly, a point source is embedded in a diverging axisymmetric
jet and the sound field is obtained by solving the linearised Euler equations.
Finally, an analysis of the acoustic waves propagating through a turbulent jet
obtained by direct numerical simulation is presented. In each problem, the
pressure or density field are analysed in the frequency-wavenumber domain. It
is found that acoustic waves can be classified into three main
frequency-dependent groups. A physical justification is provided for this
classification. The main conclusion is that, at low Strouhal numbers, acoustic
waves satisfy the d'Alembertian dispersion relation.Comment: 20 pages, 9 figure
The Electromagnetically Induced Transparency in Mechanical Effects of Light
We consider the dynamical behavior of a nanomechanical mirror in a
high-quality cavity under the action of a coupling laser and a probe laser. We
demonstrate the existence of the analog of electromagnetically induced
transparency (EIT) in the output field at the probe frequency. Our calculations
show explicitly the origin of EIT-like dips as well as the characteristic
changes in dispersion from anomalous to normal in the range where EIT dips
occur. Remarkably the pump-probe response for the opto mechanical system shares
all the features of the Lambda system as discovered by Harris and
collaborators.Comment: 4 pages, 5 figure
Mass-Gaps and Spin Chains for (Super) Membranes
We present a method for computing the non-perturbative mass-gap in the theory
of Bosonic membranes in flat background spacetimes with or without background
fluxes. The computation of mass-gaps is carried out using a matrix
regularization of the membrane Hamiltonians. The mass gap is shown to be
naturally organized as an expansion in a 'hidden' parameter, which turns out to
be : d being the related to the dimensionality of the background
space. We then proceed to develop a large perturbation theory for the
membrane/matrix-model Hamiltonians around the quantum/mass corrected effective
potential. The same parameter that controls the perturbation theory for the
mass gap is also shown to control the Hamiltonian perturbation theory around
the effective potential. The large perturbation theory is then translated
into the language of quantum spin chains and the one loop spectra of various
Bosonic matrix models are computed by applying the Bethe ansatz to the one-loop
effective Hamiltonians for membranes in flat space times. Apart from membranes
in flat spacetimes, the recently proposed matrix models (hep-th/0607005) for
non-critical membranes in plane wave type spacetimes are also analyzed within
the paradigm of quantum spin chains and the Bosonic sectors of all the models
proposed in (hep-th/0607005) are diagonalized at the one-loop level.Comment: 36 Page
Aspects of Integrability in N =4 SYM
Various recently developed connections between supersymmetric Yang-Mills
theories in four dimensions and two dimensional integrable systems serve as
crucial ingredients in improving our understanding of the AdS/CFT
correspondence. In this review, we highlight some connections between
superconformal four dimensional Yang-Mills theory and various integrable
systems. In particular, we focus on the role of Yangian symmetries in studying
the gauge theory dual of closed string excitations. We also briefly review how
the gauge theory connects to Calogero models and open quantum spin chains
through the study of the gauge theory duals of D3 branes and open strings
ending on them. This invited review, written for Modern Physics Letters-A, is
based on a seminar given at the Institute of Advanced Study, Princeton.Comment: Invited brief review for Mod. Phys. Lett. A based on a talk at I.A.S,
Princeto
KBGIS-2: A knowledge-based geographic information system
The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2
Quantum random walk of two photons in separable and entangled state
We discuss quantum random walk of two photons using linear optical elements.
We analyze the quantum random walk using photons in a variety of quantum states
including entangled states. We find that for photons initially in separable
Fock states, the final state is entangled. For polarization entangled photons
produced by type II downconverter, we calculate the joint probability of
detecting two photons at a given site. We show the remarkable dependence of the
two photon detection probability on the quantum nature of the state. In order
to understand the quantum random walk, we present exact analytical results for
small number of steps like five. We present in details numerical results for a
number of cases and supplement the numerical results with asymptotic analytical
results
Semantic categories underlying the meaning of ‘place’
This paper analyses the semantics of natural language expressions that are associated with the intuitive notion of ‘place’. We note that the nature of such terms is highly contested, and suggest that this arises from two main considerations: 1) there are a number of logically
distinct categories of place expression, which are not always clearly distinguished in discourse about ‘place’; 2) the many non-substantive place count nouns (such as ‘place’, ‘region’, ‘area’, etc.) employed in natural
language are highly ambiguous. With respect to consideration 1), we propose that place-related expressions
should be classified into the following distinct logical types: a) ‘place-like’ count nouns (further subdivided into abstract, spatial and substantive varieties), b) proper names of ‘place-like’ objects, c) locative property phrases, and d) definite descriptions of ‘place-like’ objects. We outline possible formal representations for each of these. To address consideration 2), we examine meanings, connotations and ambiguities of the English vocabulary of abstract and generic place count nouns, and identify underlying elements of meaning, which explain both
similarities and differences in the sense and usage of the various terms
Supersymmetry and Mass Gap in 2+1 Dimensions: A Gauge Invariant Hamiltonian Analysis
A Hamiltonian formulation of Yang-Mills-Chern-Simons theories with supersymmetry in terms of gauge-invariant variables is presented,
generalizing earlier work on nonsupersymmetric gauge theories. Special
attention is paid to the volume measure of integration (over the gauge orbit
space of the fields) which occurs in the inner product for the wave functions
and arguments relating it to the renormalization of the Chern-Simons level
number and to mass-gaps in the spectrum of the Hamiltonians are presented. The
expression for the integration measure is consistent with the absence of mass
gap for theories with extended supersymmetry (in the absence of additional
matter hypermultiplets and/or Chern-Simons couplings), while for the minimally
supersymmetric case, there is a mass-gap, the scale of which is set by a
renormalized level number, in agreement with indications from existing
literature. The realization of the supersymmetry algebra and the Hamiltonian in
terms of the gauge invariant variables is also presented.Comment: 31 pages, References added, typos correcte
- …
