38 research outputs found

    Coronary artery bypass surgery in high-risk patients

    Get PDF
    BACKGROUND: In high-risk coronary artery bypass patients; off-pump versus on-pump surgical strategies still remain a matter of debate, regarding which method results in a lower incidence of perioperative mortality and morbidity. We describe our experience in the treatment of high-risk coronary artery patients and compare patients assigned to on-pump and off-pump surgery. METHODS: From March 2002 to July 2004, 86 patients with EuroSCOREs > 5 underwent myocardial revascularization with or without cardiopulmonary bypass. Patients were assigned to off-pump surgery (40) or on-pump surgery (46) based on coronary anatomy coupled with the likelihood of achieving complete revascularization. RESULTS: Those patients undergoing off-pump surgery had significantly poorer left ventricular function than those undergoing on-pump surgery (28.6 ± 5.8% vs. 40.5 ± 7.4%, respectively, p < 0.05) and also had higher Euroscore values (7.26 ± 1.4 vs. 12.1 ± 1.8, respectively, p < 0.05). Differences between the two groups were nonsignificant with regard to number of grafts per patient, mean duration of surgery, anesthesia and operating room time, length of stay intensive care unit (ICU) and rate of postoperative atrial fibrillation CONCLUSION: Utilization of off-pump coronary artery bypass graft (CABG) does not confer significant clinical advantages in all high-risk patients. This review suggest that off-pump coronary revascularization may represent an alternative approach for treatment of patients with Euroscore ≥ 10 and left ventricular function ≤ 30%

    Mice Null for Calsequestrin 1 Exhibit Deficits in Functional Performance and Sarcoplasmic Reticulum Calcium Handling

    Get PDF
    In skeletal muscle, the release of calcium (Ca2+) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca2+ release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca2+ buffering as well as its potential for modulating RyR1, the L-type Ca2+ channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca2+]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca2+ content and SR Ca2+ release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca2+ release with single action potentials and a collapse of the Ca2+ release with repetitive trains. Under voltage clamp, SR Ca2+ release flux and total SR Ca2+ release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca2+ release flux appears to be solely due to elimination of the slowly decaying component of SR Ca2+ release, whereas the rapidly decaying component of SR Ca2+ release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca2+] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca2+]free in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca2+ buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca2+ release

    Specific immunoglobulin production and enhanced tumorigenicity following ascites growth of human hybridomas

    No full text
    Human 7 human hybridomas constructed with the B6 lymphoblastoid clone, which produces antitetanus toxoid (TT) antibody, and the lymphoblastoid cell line KR-4 or human hybrid myeloma KR-12, were adapted to growth as ascites in pristane-treated BALB/c nude mice by a single prior passage as a solid subcutaneous (s.c.) tumor in irradiated nude mice followed by in vitro culture. Both B6 7 KR-4 and B6 7 KR-12 hybrids produced anti-TT antibody and phenotypically resembled the lymphoblastoid KR-4, or the hybrid myeloma KR-12 parent, respectively. Growth as ascites increased the tumorigenicity of both hybrids in nude mice as measured by tumor incidence and rate of tumor growth. The observed increase in tumorigenicity of these hybrid cells after ascites growth was associated with a substantial loss of chromosomes. Passage of the B6 7 KR-4 lymphoblastoid hybrid resulted in several reversible morphological changes characteristic of myeloma cells. These changes correlated with increased human Ig production. These observations provide a system for greatly amplifying human monoclonal antibody production
    corecore