1,009 research outputs found
CARET analysis of multithreaded programs
Dynamic Pushdown Networks (DPNs) are a natural model for multithreaded
programs with (recursive) procedure calls and thread creation. On the other
hand, CARET is a temporal logic that allows to write linear temporal formulas
while taking into account the matching between calls and returns. We consider
in this paper the model-checking problem of DPNs against CARET formulas. We
show that this problem can be effectively solved by a reduction to the
emptiness problem of B\"uchi Dynamic Pushdown Systems. We then show that CARET
model checking is also decidable for DPNs communicating with locks. Our results
can, in particular, be used for the detection of concurrent malware.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles
Quasiparticles are an important decoherence mechanism in superconducting
qubits, and can be described with a complex admittance that is a generalization
of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with
a tunnel junction, we verify qualitatively the expected change of the decay
rate and frequency in a phase qubit. With their relative change in agreement to
within 4% of prediction, the theory can be reliably used to infer quasiparticle
density. We describe how settling of the decay rate may allow determination of
whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8
pages, 3 figure
Reduced phase error through optimized control of a superconducting qubit
Minimizing phase and other errors in experimental quantum gates allows higher
fidelity quantum processing. To quantify and correct for phase errors in
particular, we have developed a new experimental metrology --- amplified phase
error (APE) pulses --- that amplifies and helps identify phase errors in
general multi-level qubit architectures. In order to correct for both phase and
amplitude errors specific to virtual transitions and leakage outside of the
qubit manifold, we implement "half derivative" an experimental simplification
of derivative reduction by adiabatic gate (DRAG) control theory. The phase
errors are lowered by about a factor of five using this method to per gate, and can be tuned to zero. Leakage outside the qubit
manifold, to the qubit state, is also reduced to for
faster gates.Comment: 4 pages, 4 figures with 2 page supplementa
Deterministic entanglement of photons in two superconducting microwave resonators
Quantum entanglement, one of the defining features of quantum mechanics, has
been demonstrated in a variety of nonlinear spin-like systems. Quantum
entanglement in linear systems has proven significantly more challenging, as
the intrinsic energy level degeneracy associated with linearity makes quantum
control more difficult. Here we demonstrate the quantum entanglement of photon
states in two independent linear microwave resonators, creating N-photon NOON
states as a benchmark demonstration. We use a superconducting quantum circuit
that includes Josephson qubits to control and measure the two resonators, and
we completely characterize the entangled states with bipartite Wigner
tomography. These results demonstrate a significant advance in the quantum
control of linear resonators in superconducting circuits.Comment: 11 pages, 11 figures, and 3 tables including supplementary materia
Fluctuations From Edge Defects in Superconducting Resonators
Superconducting resonators, used in astronomy and quantum computation, couple
strongly to microscopic two-level defects. We monitor the microwave response of
superconducting resonators and observe fluctuations in dissipation and
resonance frequency. We present a unified model where the observed dissipative
and dispersive effects can be explained as originating from a bath of
fluctuating two-level systems. From these measurements, we quantify the number
and distribution of the defects
Improving the Coherence Time of Superconducting Coplanar Resonators
The quality factor and energy decay time of superconducting resonators have
been measured as a function of material, geometry, and magnetic field. Once the
dissipation of trapped magnetic vortices is minimized, we identify surface
two-level states (TLS) as an important decay mechanism. A wide gap between the
center conductor and the ground plane, as well as use of the superconductor Re
instead of Al, are shown to decrease loss. We also demonstrate that classical
measurements of resonator quality factor at low excitation power are consistent
with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures
including supplementary material. Submitted to Applied Physics Letter
Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing
A quantum computer can solve hard problems - such as prime factoring,
database searching, and quantum simulation - at the cost of needing to protect
fragile quantum states from error. Quantum error correction provides this
protection, by distributing a logical state among many physical qubits via
quantum entanglement. Superconductivity is an appealing platform, as it allows
for constructing large quantum circuits, and is compatible with
microfabrication. For superconducting qubits the surface code is a natural
choice for error correction, as it uses only nearest-neighbour coupling and
rapidly-cycled entangling gates. The gate fidelity requirements are modest: The
per-step fidelity threshold is only about 99%. Here, we demonstrate a universal
set of logic gates in a superconducting multi-qubit processor, achieving an
average single-qubit gate fidelity of 99.92% and a two-qubit gate fidelity up
to 99.4%. This places Josephson quantum computing at the fault-tolerant
threshold for surface code error correction. Our quantum processor is a first
step towards the surface code, using five qubits arranged in a linear array
with nearest-neighbour coupling. As a further demonstration, we construct a
five-qubit Greenberger-Horne-Zeilinger (GHZ) state using the complete circuit
and full set of gates. The results demonstrate that Josephson quantum computing
is a high-fidelity technology, with a clear path to scaling up to large-scale,
fault-tolerant quantum circuits.Comment: 15 pages, 13 figures, including supplementary materia
Simulating weak localization using superconducting quantum circuits
Understanding complex quantum matter presents a central challenge in
condensed matter physics. The difficulty lies in the exponential scaling of the
Hilbert space with the system size, making solutions intractable for both
analytical and conventional numerical methods. As originally envisioned by
Richard Feynman, this class of problems can be tackled using controllable
quantum simulators. Despite many efforts, building an quantum emulator capable
of solving generic quantum problems remains an outstanding challenge, as this
involves controlling a large number of quantum elements. Here, employing a
multi-element superconducting quantum circuit and manipulating a single
microwave photon, we demonstrate that we can simulate the weak localization
phenomenon observed in mesoscopic systems. By engineering the control sequence
in our emulator circuit, we are also able to reproduce the well-known
temperature dependence of weak localization. Furthermore, we can use our
circuit to continuously tune the level of disorder, a parameter that is not
readily accessible in mesoscopic systems. By demonstrating a high level of
control and complexity, our experiment shows the potential for superconducting
quantum circuits to realize scalable quantum simulators.Comment: 9 pages, including supplemen
Excitation of superconducting qubits from hot non-equilibrium quasiparticles
Superconducting qubits probe environmental defects such as non-equilibrium
quasiparticles, an important source of decoherence. We show that "hot"
non-equilibrium quasiparticles, with energies above the superconducting gap,
affect qubits differently from quasiparticles at the gap, implying qubits can
probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we
predict a non-neligable increase in the qubit excited state probability P_e. By
injecting hot quasiparticles into a qubit, we experimentally measure an
increase of P_e in semi-quantitative agreement with the model and rule out the
typically assumed thermal distribution.Comment: Main paper: 5 pages, 5 figures. Supplement: 1 page, 1 figure, 1
table. Updated to user-prepared accepted version. Key changes: Supplement
added, Introduction rewritten, Figs.2,3,5 revised, Fig.4 adde
- …
