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Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant
quantum computing
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P. Roushan,1 A. Vainsencher,1 J. Wenner,1 A. N. Korotkov,2 A. N. Cleland,1 and John M. Martinis1

1Department of Physics, University of California, Santa Barbara, CA 93106, USA
2Department of Electrical Engineering, University of California, Riverside, CA 92521, USA
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A quantum computer can solve hard problems - such
as prime factoring1,2, database searching3,4, and quantum
simulation5 - at the cost of needing to protect fragile quan-
tum states from error. Quantum error correction6 pro-
vides this protection, by distributing a logical state among
many physical qubits via quantum entanglement. Super-
conductivity is an appealing platform, as it allows for con-
structing large quantum circuits, and is compatible with
microfabrication. For superconducting qubits the surface
code7 is a natural choice for error correction, as it uses
only nearest-neighbour coupling and rapidly-cycled en-
tangling gates. The gate fidelity requirements are mod-
est: The per-step fidelity threshold is only about 99%.
Here, we demonstrate a universal set of logic gates in a
superconducting multi-qubit processor, achieving an aver-
age single-qubit gate fidelity of 99.92% and a two-qubit
gate fidelity up to 99.4%. This places Josephson quantum
computing at the fault-tolerant threshold for surface code
error correction. Our quantum processor is a first step to-
wards the surface code, using five qubits arranged in a lin-
ear array with nearest-neighbour coupling. As a further
demonstration, we construct a five-qubit Greenberger-
Horne-Zeilinger (GHZ) state8,9 using the complete circuit
and full set of gates. The results demonstrate that Joseph-
son quantum computing is a high-fidelity technology, with
a clear path to scaling up to large-scale, fault-tolerant
quantum circuits.

The high fidelity performance we demonstrate here is
achieved through a combination of highly coherent qubits, a
straightforward interconnection architecture, and a novel im-
plementation of the two-qubit controlled-phase (CZ) entan-
gling gate. The CZ gate uses a fast but adiabatic frequency
tuning of the qubits10, which is easily adjusted yet minimises
decoherence and leakage from the computational basis [Mar-
tinis, J., et al., in preparation]. We note that previous demon-
strations of two-qubit gates achieving better than 99% fidelity
used fixed-frequency qubits: Systems based on nuclear mag-
netic resonance and ion traps have shown two-qubit gates with
fidelities of 99.5%11 and 99.3%12. Here, the tuneable nature
of the qubits and their entangling gates provides, remarkably,
both high fidelity and fast control.

Superconducting integrated circuits give flexibility in build-
ing quantum systems due to the macroscopic nature of the
electron condensate. As shown in Fig. 1, we have designed
a processor consisting of five Xmon qubits with nearest-
neighbour coupling, arranged in a linear array. The cross-

shaped qubit14 offers a nodal approach to connectivity while
maintaining a high level of coherence (see Supplementary In-
formation for decoherence times). Here, the four legs of the
cross allow for a natural segmentation of the design into cou-
pling, control and readout. We chose a modest inter-qubit ca-
pacitive coupling strength of g/2π = 30 MHz and use al-
ternating qubit idle frequencies of 5.5 and 4.7 GHz, enabling
a CZ gate in 40 ns when two qubits are brought near reso-
nance, while minimising the effective coupling to 0.3 MHz
when the qubits are at their idle points. Rotations around the X
and Y axes in the Bloch sphere representation are performed
using pulses on the microwave (XY) line, while Z axis ro-
tations are achieved by a flux-bias current on the frequency-
control (Z) line. We use dispersive measurement15 where each
qubit is coupled to a readout resonator, each with a differ-
ent resonance frequency, enabling simultaneous readout us-
ing frequency-domain multiplexing through a single coplanar
waveguide16[Mutus, J., et al., in preparation]. The modularity
of this architecture makes it straightforward to integrate more
qubits in the circuit.

We characterise our gate fidelities using Clifford-based ran-
domised benchmarking11,17,18. The Clifford group is a set of
rotations that evenly samples the Hilbert space, thus averaging
across errors. For the single-qubit case the Cliffords are com-
prised of π, π/2 and 2π/3 rotations, see Supplementary Infor-
mation. In randomised benchmarking, a logic gate is charac-
terised by measuring its performance when interleaved with
many random sequences of gates, making the measured fi-
delity resilient to state preparation and measurement (SPAM)
errors. We perform a control experiment on a ground-state
qubit by: I) generating a random sequence of m Cliffords, II)
appending the unique recovery Clifford (Cr) that makes the
ideal sequence the identity, and III) averaging the experimen-
tal sequence fidelity, the final ground state population, over
k different sequences18,19. The resulting reference sequence
fidelity Fref is fit to Fref = Apref

m + B, where pref is the
sequence decay, and state preparation and measurement errors
are captured in the parametersA andB. The average error per
Clifford of the reference is given by rref = (1−pref)(d−1)/d,
with d = 2Nqubits . We then measure the fidelity of a specific
gate by interleaving this test gate withm random Cliffords and
performing the same measurement. The sequence decay pgate
then gives the gate error rgate = (1− pgate/pref)(d− 1)/d.

The benchmarking results for the single-qubit gates are
shown in Fig. 2. We generate the Cliffords using microwave
pulses, from a basis set of π and π/2 rotations around the X
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and Y axes (Supplementary Information). We benchmark X
and Y axis π and π/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-
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FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 − Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10−4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11〉 state close to the avoided-level crossing
with the |02〉 state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02〉-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.
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FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence ofm random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with π and π/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1− rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10−5.
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FIG. 3: CZ gate physics and randomised benchmarking results.
(a) We use the the |1B1A〉 and |0B2A〉 avoided level crossing to
implement a high-fidelity CZ gate, with the fast adiabatic tuning
of qubit A giving a selective π phase change of the |1B1A〉 state.
The energy level diagram shows qubit A approaching and leaving
the avoided level crossing from above (top, blue dashed line), fol-
lowing a fast (43 ns) yet effectively adiabatic trajectory (bottom,
solid blue line). Unwanted state leakage from |1B1A〉 to |0B2A〉
(red dashed line) is minimised by adjusting the trajectory. (b) Ran-
domised benchmarking data (k = 100) of the CZ gate for the qubit
pair Q2 and Q3, using the two-qubit Clifford group C2 (Supplemen-
tary Information); reference data in black (rref = 0.0189), inter-
leaved in blue (rC2+CZ = 0.0244). Dashed lines indicate the thresh-
olds for gate fidelities of 0.98 and 0.99. We find a CZ gate fidelity of
0.9944± 0.0005 (uncertainty from bootstrapping). (c) Coherent mi-
crowave (XY) and frequency (Z) control of the quantum state while
performing a complex two-qubit algorithm; the sequence contains
over 500 gates, corresponding to the characteristic reference decay
of m = 55, and is over 7 µs long. The right panel shows an example
Clifford from the iSWAP class, comprised of single qubit rotations
and two CZ gates (Supplementary Information).

The benchmarking results of the CZ gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate se-
quences of two-qubit Cliffords to produce a reference curve,

then interleave the CZ gate to extract the fidelity. An example
pulse sequence for an m = 55 Clifford sequence is shown in
Fig. 3c. We find a CZ gate fidelity of up to 99.44 ± 0.05 %,
consistent with the average error per Clifford (Supplementary
Information). We find fidelities between 99.0-99.44% on all
four pairs of nearest-neighbour qubits (Supplementary Infor-
mation). This comprises a clear demonstration of high-fidelity
single- and two-qubit gates in a multi-qubit Josephson quan-
tum processor. The two-qubit gate fidelity compares well with
the highest values reported for other mature quantum systems:
For nuclear magnetic resonance and ion traps, entangling gate
fidelites are as high as 99.5% and 99.3%11,12. Importantly, we
have verified by simulation that the experimentally obtained
gate fidelities are at the threshold for surface code quantum
error correction, see Supplementary Information.

We are optimistic that we can improve upon these gate fi-
delities with modest effort. The CZ gate fidelity is limited
by three error mechanisms: Decoherence (55% of the total
error), control error (24%), and state leakage (21%), see Sup-
plementary Information. Decoherence can be suppressed with
enhanced materials and optimised fabrication24,25. Imperfec-
tions in control arise primarily from reflections and stray in-
ductances in wiring, and can be improved using conventional
microwave techniques. Given the adiabatic nature of the CZ
gate, 2-state leakage can be suppressed by slightly increasing
the gate time [Martinis, J., et al., in preparation].

We showcase the modularity of this set of quantum logic
gates by constructing a maximally-entangled GHZ state
across all five qubits in our processor, as shown in Fig. 4a.
The N -qubit GHZ state |GHZ〉 = (|0〉⊗N + |1〉⊗N )/

√
2 is

constructed with single and two-qubit gates, using simultane-
ous control and readout of all qubits. This algorithm is shown
in Fig. 4b, where the state is assembled by entangling one
additional qubit at a time. The algorithm is highly sensitive
to control error and decoherence on any computational ele-
ment. We fully characterise the Bell and GHZ states by us-
ing quantum state tomography9, where quadratic maximum
likelihood estimation is used to extract each density matrix
(ρ) from the measurement data, while satisfying the physi-
cal constraints that ρ be Hermitian, unit trace, and positive
semi-definite (Supplementary Information). The density ma-
trices are plotted in the traditional cityscape style, and show
significant elements only at the ideal locations. We find state
fidelities Tr

(√
ρidealρ

√
ρideal

)
of 99.5±0.4 %, 96.0±0.5 %,

86.3 ± 0.5 % and 81.7 ± 0.5 % for the N = 2 Bell state and
N = 3, 4, 5 GHZ states. A GHZ state fidelity over 50 % satis-
fies the criterion for genuine entanglement26. It is interesting
to note that the ratio of the off-diagonal to diagonal ampli-
tudes |ρ|0〉⊗N ,|1〉⊗N |2/ρ|0〉⊗N ,|0〉⊗Nρ|1〉⊗N ,|1〉⊗N have the val-
ues 0.99, 0.98, 0.99 and 0.99, suggesting that dephasing is
small and/or uncorrelated. The five-qubit GHZ state is the
largest multi-qubit entanglement demonstrated to date in the
solid state8,9, with state fidelity similar to results obtained in
ion traps27. This demonstrates that complex quantum states
can be constructed with high fidelity in a modular fashion,
highlighting the potential for more intricate algorithms on this
multi-purpose quantum processor.

We have shown single and two-qubit gates with fidelities
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FIG. 4: Quantum state tomography and generation of the GHZ state. Top row: Real part of the density matrix ρ for the N = 2 Bell
state and the N = 3, 4 and 5 GHZ states, measured by quantum state tomography. Ideal density matrix elements are transparent, with value
0.5 at the four corners. Bottom row: Algorithm used to construct the states. See Supplementary Information for Im(ρ), the Pauli operator
representation, and the full gate sequence, which includes Hahn spin-echo pulses.

at the fault-tolerant threshold for the surface code in an in-
tegrated circuit quantum processor. With this demonstration,
Josephson quantum devices are now poised to explore fault-
tolerant, multi-qubit computing. Extending the linear array of
qubits to larger qubit numbers is straightforward, and gener-
ating a two-dimensional grid of qubits appears to be mostly a
(significant) engineering challenge. In a separate experiment,
we have demonstrated fast, high-fidelity qubit state measure-
ment [Jeffrey, E., et al., in preparation], in a design that can be
seamlessly integrated with this architecture. The combination
of high-fidelity logic, a multi-qubit architecture, and fast and
accurate qubit readout provides the essential ingredients for a
Josephson surface code quantum computer.
Acknowledgements We thank F. Wilhelm, D. Egger, and J.
Baselmans for helpful discussions. We are indebted to Erik
Lucero for photography of the device. This work was sup-
ported by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity
(IARPA), through the Army Research Office grants W911NF-
09-1-0375 and W911NF-10-1-0334. All statements of fact,
opinion or conclusions contained herein are those of the au-

thors and should not be construed as representing the of-
ficial views or policies of IARPA, the ODNI, or the U.S.
Government. Devices were made at the UC Santa Barbara
Nanofabrication Facility, a part of the NSF-funded National
Nanotechnology Infrastructure Network, and at the NanoS-
tructures Cleanroom Facility.

Author contributions R.B. and J.K designed the sample, per-
formed the experiment and analysed the data. J.K., A.E.M.,
and R.B. fabricated the sample. R.B., J.K., J.M.M., and
A.N.C. co-wrote the manuscript. A.V. and A.N.K. provided
assistance with randomised benchmarking. A.G.F. verified the
experimental gate fidelities to be at the surface code threshold.
All authors contributed to the fabrication process, experimen-
tal set-up and manuscript preparation.

Additional information The authors declare no competing
financial interests. Supplementary information accompanies
this paper on [weblink to be inserted by editor]. Reprints and
permissions information is available at [weblink to be inserted
by editor]. Correspondence and requests for materials should
be addressed to R.B., J.K or J.M.M.

∗ These authors contributed equally to this work
1 Vandersypen, L. M. K. et al. Experimental realization of Shor’s

quantum factoring algorithm using nuclear magnetic resonance.
Nature 414, 883-887 (2001).

2 Lucero, E. et al. Computing prime factors with a Josephson phase
qubit quantum processor. Nature Physics 8, 719-723 (2012).

3 Jones, J., Mosca M., & Hansen R. Implementation of a quantum
search algorithm on a quantum computer. Nature 393, 334-346
(1998).

4 Chuang, I. L., Gershenfeld, N., & Kubinec, M. Experimental im-
plementation of fast quantum searching. Phys. Rev. Lett. 80, 3408

(1998).
5 Feynman, R. P. Simulating physics with computers. Int. J. Th.

Phys. 21, 467-488 (1982).
6 Nielsen, M. A., & Chuang, I. L.Quantum Computation and Quan-

tum Information. Cambridge university press, Cambridge, U. K.
(2010).

7 Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N.
Surface codes: Towards practical large-scale quantum computa-
tion. Phys. Rev. A 86, 03232 (2012).

8 DiCarlo, L., et al. Preparation and measurement of three-qubit
entanglement in a superconducting circuit. Nature 467, 574-578



5

(2010).
9 Neeley, M., et al. Generation of three-qubit entangled states using

superconducting phase qubits. Nature 467, 570-573 (2010).
10 Ghosh, J., et al. High-fidelity controlled-σZ gate for resonator-

based superconducting quantum computers. Phys. Rev. A 87,
022309 (2013).

11 Ryan, C. A., Laforest, M., & Laflamme, R. Randomized bench-
marking of single-and multi-qubit control in liquid-state NMR
quantum information processing. New J. Phys. 11, 013034 (2009).

12 Benhelm, J., Kirchmair, G., Roos, C. F., & Blatt, R. Towards fault-
tolerant quantum computing with trapped ions. Nature Physics 4,
463-466 (2008).

13 Koch, J., et al. Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2013).

14 Barends, R. et al. Coherent Josephson qubit suitable for scalable
quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

15 Wallraff, A. et al. Strong coupling of a single photon to a super-
conducting qubit using circuit quantum electrodynamics. Nature
431, 162-167 (2004).

16 Chen, Y., et al. Multiplexed dispersive readout of superconducting
phase qubits. Appl. Phys. Lett. 101, 182601 (2012).

17 Brown, K. R. et al. Single-qubit-gate error below 10−4 in a
trapped ion. Phys. Rev. A. 84, 030303 (2011).
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Supplementary Information

DEVICE FUNDAMENTALS

Fabrication

The devices are made in a process similar to the fabrication
steps outlined in Ref. [1], with an important improvement: we
have added crossovers to suppress stray microwave chip modes
by tying the ground planes together with low impedance con-
nections. Otherwise, the many control wires in our chip could
lead to segmentation of the ground plane, and the appearance
of parasitic slotline modes [2]. The device is made in a five-
step deposition process, (I) Al deposition and control wiring
etch, (II) crossover dielectric deposition, (III) crossover Al de-
position, (IV) Qubit capacitor and resonator etch, (V) Josephson
junction deposition. The qubit capacitor, ground plane, readout
resonators, and control wiring are made using molecular beam
epitaxy (MBE)-grown Al on sapphire [3]. The control wiring is
patterned using lithography and etching with a BCl3/Cl2 reactive
ion etch. A 200 nm thick layer of SiO2 for the crossover dielec-
tric is deposited in an e-beam evaporator, followed by lift-off.
We fabricate crossovers on all the control wiring, using a SiO2

dielectric that has a non-negligible loss tangent. An in-situ Ar
ion mill is used to remove the native AlOx insulator, after which
a 200 nm Al layer for the crossover wiring is deposited in an
e-beam evaporator, followed by lift-off. We used 0.9 µm i-line
photoresist, lift-off is done in N-methyl-2-pyrrolidone at 80◦C.
A second BCl3/Cl2 etch is used to define the qubit capacitor and
resonators; this step is separate from the wiring etch to prevent
the sensitive capacitor from seeing extra processing. Lastly, we
use electron beam lithography, an in-situ Ar ion mill, and double
angle shadow evaporation to deposit the Josephson junctions, in
a final lift-off process. See Ref. [1] for details.

TABLE S1: Qubit frequencies and nonlinearities (f21 − f10) at the
zero flux bias (degeneracy point) and coupling strengths in MHz. The
coupling strength is measured at frequencies between 4.2 and 4.7 GHz.
We find a typical next-nearest neighbour coupling of g/2π = 1.3 MHz,
consistent with microwave circuit simulations.
qubits Q0 Q1 Q2 Q3 Q4

f10 5805 5238 5780 5060 5696
nonlinearity -217 -226 -214 -212 -223
g01/2π (4.22 GHz) 27.7
g12/2π (4.70 GHz) 30.8
g23/2π (4.66 GHz) 30.4
g34/2π (4.65 GHz) 30.9

Coherence Times

Energy relaxation times T1 of all qubits are shown in Fig. S1,
measured over a frequency range from 4 to 6 GHz. We find typ-
ical T1 values between 20 and 40 µs. Variations in T1 arise pre-
dominantly from the qubit interacting incoherently with weakly
coupled two-level defects, as discussed in Ref. [1]. In this pre-
vious work we found that larger area (with longer and wider
legs) Xmon qubits showed higher T1 values as well as large,
frequency-specific suppressions in the energy coherence: for
certain frequencies the T1 would decrease to values below 10 µs.
We attribute these large suppressions to chip modes, arising from
imbalances in the microwave control lines, to which the larger
Xmon geometries can couple more strongly. The data in Fig. S1
exhibit fewer of such suppressions; we believe that this improve-
ment is due to the addition of crossovers.

We have investigated the Ramsey dephasing times versus fre-
quency for qubit Q1. The Ramsey decay envelope is measured
by phase tomography (see Ref. [1]) and fitted to the function
exp[−t/Tφ,1 − (t/Tφ,2)2]. Slow, Gaussian dephasing is cap-
tured in Tφ,1, and fast dephasing, from white noise as well
as energy relaxation, is captured in Tφ,2. Typical dephasing
times are plotted in Fig. S2. We find a fast dephasing time on
the order of 10 µs; this value is below the energy coherence
time, and may be due to white noise from the room tempera-
ture control electronics. The slow, Gaussian dephasing times
are consistent with a 1/f -spectrum with a spectral density of
SΦ(1 Hz) = 1.1 µΦ0/

√
Hz.

Qubit Frequencies and Coupling

Qubit frequencies and nearest neighbour coupling strengths
are listed in Table S1.

Z Crosstalk

We measure a crosstalk between the frequency Z control lines
and qubits that is small, approximately 1 − 2%. After adding
compensation pulses to orthonormalise the control, we find a
remnant crosstalk of below 10−4. The crosstalk matrix MΦ is
shown below, defined as: Φactual = MΦΦideal, with Φ the flux
threaded through each qubit’s superconducting quantum inter-
ference device (SQUID) loop.

MΦ =


1.000 −0.023 −0.014 −0.009 −0.006
0.019 1.000 −0.022 −0.011 −0.007
0.017 0.000 1.000 −0.016 −0.009
0.016 0.008 −0.015 1.000 −0.014
0.013 0.014 −0.016 −0.010 1.000





EXPERIMENTAL SETUP

The wiring diagram and circuit components are shown in
Fig. S3.
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FIG. S1: Energy Relaxation for Xmon Qubits. Frequency depen-
dence of T1 for all qubits. The frequency step size is 2 MHz. The
values for T1 are generally in the 20-40µs range. The depression at
4.36 GHz in qubit Q3 is due to a coherently coupled junction defect.

FLATTENING THE Z RESPONSE

Imperfections in the frequency control wiring can cause rip-
ples after a pulse. Left unchecked, these can affect gate fi-
delity significantly, appearing as single qubit phase errors, see
Fig. S4. We employ a two-step procedure to correct for these
non-idealities. We first calibrate the room temperature electron-
ics by measuring the unit step (Heaviside step) response at the
output of the Z control board.

With the board response corrected by deconvolution, we mea-
sure the qubit phase as a function of time ∆τ after the end of a
unit step. This probes the transfer function of the fridge wiring,
contact pads and on-chip control lines. When no unit step is
applied, the X/2 pulse rotates the qubit state onto the Y axis.
When applying a unit step, deviations in frequency will cause
the Bloch sphere vector to deviate from the Y axis. A subse-
quent Y/2 pulse will make this apparent in the measured excited
state probability. We note that this measurement is first order
sensitive to small deviations – the difference in probability de-
notes the phase deviation (∆φ ≈ ∆P|1〉) – whereas Ramsey and
quantum state tomography are second order sensitive: The π/2
pulses used in tomography project the state onto the Z axis, thus
the reconstruction of the phase or state is done from probabilities
(P ≈ 1−∆φ2/2) which are second order sensitive to φ.

We find that the transfer function can be described by an
exponential response with two timescales. Typical values are
100 ns and 5 ns. The longer timescale is consistent with
the L/R time arising from the bias tee, with L ≈ 6 µH
and R = 50 Ω. We believe that the short timescale arises
from reflections. The impulse response of an imperfect wire
with reflection r, placed time T away from the wire’s end is
H(ω) = 1 − r +

∑∞
k=1 r

k exp(−2ikωT ); at low frequen-
cies this can be approximated by the impulse response function
h(t) ∝ exp(−t/2aT )u(t). Assuming reflection coefficients on
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FIG. S2: Ramsey dephasing. Frequency dependence of the slow (Tφ,1)
and fast (Tφ,2) Ramsey dephasing times of qubit Q1. Flux bias points
Φ/Φ0 range from 0.1 to 0.28, and δf10/δ(Φ/Φ0) range from -16 to -50
GHz.
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FIG. S3: Electronics and Control Wiring. Diagram detailing all of the control electronics, control wiring, and filtering for the experimental
setup. Each qubit uses one digital to analog converter (DAC) channel for each of the X, Y, and Z rotations. Additionally, we use a DC bias tee to
connect a voltage source to each qubit frequency control line to give a static frequency offset. All five qubits are read out using frequency-domain
multiplexing on a single measurement line. The readout DAC generates five measurement tones at the distinct frequencies corresponding to each
qubit’s readout resonator. The signal is amplified by a wideband parametric amplifier [Mutus, J. et al. in preparation], a high electron mobility
transistor (HEMT), and room temperature amplifiers before demodulation and state discrimination by the analog to digital converter (ADC). All
control wires go through various stages of attenuation and filtering to prevent unwanted signals from disturbing the quantum processor.

the order of -10 dB and round trip times 2T between qubit and
mixing plate electronics on the order several ns, the effective
decay time 2rT is on the order of a few ns.

With the corrections in place, by deconvolving both the board
response and fridge wiring, remnant control pulse ripples are
suppressed to below 10−4: We find qubit phase deviations con-
sistent with a 30 kHz drift after applying a 0.5 GHz detuning
step pulse, see Fig. S4. The calibrations discussed above are key
for obtaining accurate CZ gates.

SINGLE QUBIT AND TWO-QUBIT GATE FIDELITIES OF
ALL QUBITS

A comprehensive listing of all single qubit gate fidelities of all
qubits is shown in Table S2, the gate durations are in Table S3.
A listing of all CZ gate fidelities can be found in Table S4.

VERIFYING EXPERIMENTAL FIDELITIES ARE AT THE
SURFACE CODE THRESHOLD

Nominally, the threshold fidelity of the surface code is 0.99
[7], provided one assumes there is no leakage, the two-qubit
interaction is the dominant source of error, and gates can be
performed perfectly in parallel. The physical device described
in this work has complex behavior outside these assumptions,
necessitating a device-specific calculation of the surface code
threshold fidelity.

When a CZ gate is applied, no qubit neighbouring either of the
qubits involved in the CZ can be involved in their own CZ gate.
We have devised a 16 step CZ application pattern that accounts
for these parallelism constraints and still measures all stabilizers.
The longest measured CZ time of 45 ns will be used. Further-
more, the CZ gate, which is always applied between one mea-
surement qubit and one data qubit, has a small amount of leakage
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FIG. S4: Control pulse ripple. Qubit phase response to a unit step
(amplitude: 0.5 GHz) applied to the frequency control line, with and
without correction. The pulse sequence is shown in the inset, with the
dashed line representing the unit step. With correction, a phase drift of
0.03 rad in 150 ns is observed, consistent with a remnant control pulse
ripple of 30 kHz.

(< 0.2%) on the measurement qubit, but practically negligible
leakage on the data qubit. We shall neglect this small amount of
measurement qubit leakage. Methods of coping with leakage in
topological codes are known [8].

TABLE S2: Single qubit gate fidelities for all qubits, determined by
Clifford-based randomised benchmarking. Averaged over all gates and
all qubits we find an average fidelity of 0.9992. The standard deviation
is typically 5 · 10−5. The gate times are between 10 and 20 ns, see
Table S3, except for the composite gates H and 2T, which are twice as
long. The idle is as long as the shortest microwave gate (12 ns to 20 ns).

gates Q0 Q1 Q2 Q3 Q4

I 0.9990 0.9996 0.9995 0.9994 0.9991
X 0.9992 0.9996 0.9992 0.9991 0.9991
Y 0.9991 0.9995 0.9993 0.9992 0.9991
X/2 0.9992 0.9993 0.9993 0.9994 0.9993
Y/2 0.9991 0.9993 0.9995 0.9994 0.9994
-X 0.9991 0.9995 0.9992 0.9989 0.9991
-Y 0.9991 0.9995 0.9991 0.9987 0.9991
-X/2 0.9991 0.9992 0.9993 0.9990 0.9995
-Y/2 0.9991 0.9992 0.9995 0.9990 0.9994
H 0.9986 0.9986 0.9991 0.9981 0.9988
Z 0.9995 0.9988 0.9994 0.9991 0.9993
Z/2 0.9998 0.9991 0.9998 0.9995 0.9996
2T a 0.9989 0.9994 0.9989 0.9990
average over gates 0.9992 0.9992 0.9994 0.9991 0.9992
average over qubits 0.9992

aAs the T gate is not a Clifford generator, a single recovery gate can not be
found when interleaving. This precludes Clifford-based randomised benchmark-
ing of the T gate. To quantify this gate to some extent, we have benchmarked
2T gates, physically implemented by applying two T gates in series. If the gate
error is predominantly gate-aspecific, the T gate error is half that of the 2T gate,
suggesting that the average T gate fidelity is 0.9995

Measurement with fidelity 0.99 in 200 ns and initialization
with fidelity 0.99 in 50 ns will be assumed [Jeffrey, E., et al., in
preparation]. Y/2 gates will be used instead of Hadamard gates,
with the slowest 20 ns time assumed and an average fidelity of
0.9992 (calculated only from the slower Y/2 gates) assumed. An
identity error of 0.05% per 10 ns will be assumed, consistent
with experimental data.

Detailed simulations of 5x5, 9x9, and 13x13 qubit arrays with
the above parameters have been performed making use of the
latest correction techniques [9]. The logical error rate was found
to be the same in all cases, justifying our claim of a device with
parameters at the surface code threshold.

CZ GATE ERROR BUDGET

We experimentally measure the three predominant error
mechanisms of the CZ gate: 2-state leakage, decoherence and
control error. 2-state leakage is measured using the same tech-
nique as outlined in [4]. The system is initialised in the |11〉-state
followed by two CZ gates. As the time between these two gates
is varied, we measure an interference pattern in the probability
where the amplitude is proportional to the |02〉 state leakage.
The error is given by ∆P/4 [4]. We also see additional interfer-
ence patterns that come from imperfect |11〉 preparation at the
beginning of the sequence. We note that leakage occurs predom-
inantly in the qubit which undergoes the frequency trajectory.

TABLE S3: Single qubit gate times in ns.

gates Q0 Q1 Q2 Q3 Q4

XY axes π rotations 20 20 12 18 12
XY axes π/2 rotations 20 20 12 12 12
Z axis π, π/2, π/4 rotations 10 10 10 10 10
I 20 20 12 12 12
H 40 40 24 30 24
2T 20 20 20 20 20

TABLE S4: CZ gate fidelities for all qubit pairs, determined by
Clifford-based randomised benchmarking. Gate times are between 38
and 45 ns; Q0-Q1: 45 ns, Q1-Q2: 43 ns, Q2-Q3: 43 ns, Q3-Q4: 38 ns.

qubits Q0 Q1 Q2 Q3 Q4

CZQ0−Q1 0.9924 ± 0.0005
CZQ1−Q2 0.9936 ± 0.0004
CZQ2−Q3 0.9944 ± 0.0005
CZQ3−Q4 0.9900 ± 0.0006

TABLE S5: CZ gate error budget, including the contribution to the total
error in percent.

Decoherence (55%) Q2 ≥ 0.0017 (24%)
Q3 0.0022 (31%)

Control (45%) single qubit phase error ≤ 0.0017 (24%)
state leakage 0.0015 (21%)
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FIG. S5: CZ error budget. (a) In the Ramsey error filter technique
an interference pattern arises in the measured probability (black dots)
whose magnitude is proportional to the |02〉-state leakage. The data are
smoothed (red) for enhanced visibility. The frequency of these oscilla-
tions (indicated by the arrow, 1.6 ns) is the idling frequency difference
between qubits (800 MHz), minus the nonlinearity (200 MHz) as we are
measuring the crossing between |11〉 and |02〉. Other frequencies are
believed to arise from improper |11〉 state preparation. (b) Randomised
benchmarking sequence fidelity for qubits Q2 and Q3. Decoherence is
quantified by idling for the same duration as the CZ gate. Controls error
can be identified by applying the control pulse on Q2, without doing a
full CZ by detuning Q3. For the randomised benchmarking data of the
CZ (not shown): rref = 0.0198 and rCZ = 0.0269.

We measure the decoherence contribution from each qubit by
performing interleaved randomised benchmarking with an idle
of the same duration as the CZ gate. The contribution to er-
ror from the waveform is measured by interleaved randomised
benchmarking on the waveform for the CZ gate alone, with
a slightly lower amplitude to avoid interactions with the other
qubit. We treat this as a single-qubit phase gate. With the idle er-
ror measured, we can separate out decoherence and single qubit
phase error. Because we are detuning the qubit down in fre-
quency to a part of the spectrum where it is more sensitive to
flux noise, inducing more dephasing, the single qubit phase er-
ror is an upper bound. With these experiments we can construct
an error budget for all of the dominant error mechanisms, as seen
in Table S5.

QUANTIFYING XY CONTROL CROSSTALK USING
SIMULTANEOUS RANDOMISED BENCHMARKING

Addressability, the ability to individually control a single
qubit without affecting neighbouring qubits, is of great im-
portance when building a multi-qubit system. In our five
Xmon qubit processor the addressability is mostly compro-
mised in three ways: Z control crosstalk, microwave XY control
crosstalk, and off-resonant qubit-qubit coupling. Z crosstalk can
be reduced to below the 10−4 level. Microwave XY crosstalk
becomes a problem if a qubit’s control pulses perform rotations
on a neighbouring qubit. Off-resonant qubit-qubit coupling will
very slowly perform a CZ gate between the qubits, potentially

causing unwanted phase shifts with rate ΩZZ ,

ΩZZ = − 2g2(η1 + η2)

(∆− η1)(∆ + η2)
, (S1)

with η1 and η2 the qubit nonlinearities, and ∆ the difference in
qubit frequencies.

We performed crosstalk characterisation on nearest neighbour
and next-nearest neighbour qubits. Nearest neighbours are far
detuned (> 800 MHz), hence the microwave XY crosstalk is
expected to be negligible, but the off-resonant CZ interaction
may be non-negligible. Next-nearest neighbors have a much
smaller coupling (g =1.3 MHz), but are only detuned by 100-
400 MHz; hence both the off-resonant CZ as well as microwave
XY crosstalk may be detrimental. We investigate these mech-
anisms by using the simultaneous randomised benchmarking
techniques outlined in [6]. We can single out errors that come
from poor addressability by performing randomised benchmark-
ing on each qubit individually, and operating both qubits simul-
taneously.

The randomised benchmarking data are shown in Fig. S6.
We can determine the effect of controlling qubit Q3 on Q2, by
first benchmarking qubit Q2 individually (I ⊗ C1, green open
squares), and benchmarking both qubit Q2 and Q3 simultane-
ously, and tracing out the contribution of Q3 (C1⊗C1, green full
squares). The decay for both traces is virtually indistinguishable,
the added error is below 10−4. Likewise, we find that the effect
on Q3 of controlling Q2 simultaneously leads to an added error
per Clifford of 2 · 10−4. For next nearest neighbours, we find
added errors per Clifford of 1 · 10−4 and 2 · 10−4. For both the
nearest neighbour and next-nearest neighbours the added error
of operating them simultaneously is < 2 · 10−4. We conclude
that XY control crosstalk is a minor error mechanism, enabling
a high degree of addressability in this architecture.

GENERATION OF THE CLIFFORD GROUPS

Single qubit Clifford group C1

The single qubit Clifford group C1 is the group of 24 rota-
tions which preserve the octahedron in the Bloch sphere. We
implement the group using microwave pulses only, decomposed
into rotations around the X and Y axes using the generators: {I,
±X/2, ±Y/2, ±X, ±Y }, as summarised in Table S6. The av-
erage number of single qubit gates per single qubit Clifford is
1.875.

Two qubit Clifford group C2

Using the single qubit Cliffords, we can construct the two
qubit Clifford group C2 following Ref. [5]. This group has four
classes: the single qubit class, the CNOT-like class, the iSWAP-
like class, and the SWAP-like class. The CNOT and SWAP-like
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FIG. S6: Simultaneous randomised benchmarking of nearest and
next nearest neighbours. (a) Benchmarking the effect of Q2 on Q3

and vice-versa (fQ2
= 5.72 GHz, fQ3

= 4.67 GHz). The sequence
fidelities are shown for operating Q2 individually (I ⊗ C1, green open
squares), Q3 individually (C1 ⊗ I , purple open circles), and Q2 and
Q3 simultaneously (C1 ⊗ C1, full symbols). By tracing out one qubit,
its effect on the other qubit becomes apparent: the errors per Clifford
are: rQ2=0.0011, rQ2|Q3=0.0012, rQ3=0.0018, rQ3|Q2=0.0020. (b)
Benchmarking of Q0 and Q2 (fQ0

= 5.30 GHz, fQ2
= 5.72 GHz).

The errors per Clifford are: rQ0=0.0016, rQ0|Q2=0.0018, rQ2=0.0011,
rQ2|Q0=0.0011. Note that the errors per Clifford are consistent with the
average gate fidelities in Table S2: for Q2, the average gate fidelity is
1− rQ2/1.875=0.9994. Coupling strengths can be found in Table S1.

class are terminated with a gate from the 3-element group S1,
as described in Table S7. The single qubit class has 242 = 576

TABLE S6: The 24 single qubit Cliffords written in terms of the phys-
ical microwave gates applied in time. The Paulis and 2π/3 rotations
form the tetrahedron symmetry group.

Single qubit Cliffords

Paulis

I
X
Y
Y, X

2π/3 rotations

X/2, Y/2
X/2, -Y/2
-X/2, Y/2
-X/2, -Y/2
Y/2, X/2
Y/2, -X/2
-Y/2, X/2
-Y/2, -X/2

π/2 rotations

X/2
-X/2
Y/2
-Y/2
-X/2, Y/2, X/2
-X/2, -Y/2, X/2

Hadamard-like

X, Y/2
X, -Y/2
Y, X/2
Y, -X/2
X/2, Y/2, X/2
-X/2, Y/2, -X/2

elements:

C1

C1

The CNOT-like class has 242 × 32 = 5184 elements.

C1 • S1

C1 S1

The iSWAP-like class also has 5184 elements,

C1 �� S1

C1 �� S1

Finally the SWAP-like class, with 576 elements, is given by

C1 ×

C1 ×

bringing the full size of the two-qubit Clifford group to 11520.
Here, we rewrite the two-qubit Cliffords in terms of the CZ

entangling gate. We rewrite the CNOT, iSWAP and SWAP in
terms of the CZ:

• → •
−Y/2 • Y/2

�� → −Y/2 • Y/2 • Y/2

�� −X/2 • −X/2 • X/2

× → • −Y/2 • Y/2 •

× −Y/2 • Y/2 • −Y/2 • Y/2

As the single qubit gates preceeding the entangling operation
(CZ gate) can be absorbed into C1, and the final single qubit

TABLE S7: The S1 sets written in terms of physical gates in time; these
are elements of the single qubit Clifford group, and therefore physically
implemented in the same way.

S1

I
Y/2, X/2

-X/2, -Y/2

S
X/2
1

X/2
X/2, Y/2, X/2

-Y/2

S
Y/2
1

Y/2
Y, X/2

-X/2, -Y/2, X/2



gates can be absorbed into S1 (see Table S7), we have for the
CNOT-like class,

C1 • S1

C1 • S
Y/2
1

the iSWAP-like class,

C1 • Y/2 • S
Y/2
1

C1 • −X/2 • S
X/2
1

and the SWAP-like class,

C1 • −Y/2 • Y/2 •

C1 • Y/2 • −Y/2 • Y/2

The average number of gates for C2 is 1.5 CZ gates and 8.25
single qubit gates. For the idle, we wait as long as the shortest
single qubit gate. For a single qubit gate time of 20 ns and a CZ
gate time of 40 ns, the average duration of C1 is 37.5 ns, and C2

is 160 ns.
The Clifford group is a 2-design. A set of unitaries {Uk}Kk=1

is a 2-design if and only if [12]
K∑

k,k′=1

|Tr
(
U†k′Uk

)
|4/K2 = 2. (S2)

As a consistency check, we have verified that the single and two-
qubit Cliffords we generate are indeed a 2-design with the above
equation.

ESTIMATING THE ERROR PER CLIFFORD

Here, we connect the error per Clifford r to the errors of
the single and two-qubit gates, measured when performing ran-
domised benchmarking. This shows the physical significance
of the error per Clifford, and is an important self-consistency
check. We can give an estimate for the error per Clifford by de-
termining the average number of single and two-qubit gates that
go into a Clifford, combined with the single and two-qubit gate
fidelities that we measure using interleaved randomised bench-
marking. We assume that all the gates have low enough error
such that adding error when composing gates is a good approxi-
mation.

Single qubit Clifford group C1

There are 45 single qubit gates used across 24 Cliffords. With
the assumption that all single gates have the same error, the av-
erage error per Clifford is

rC1
= 1.875rSQ, (S3)

with rSQ the average single-qubit gate error.

Two qubit Clifford group C2

The four classes of two-qubit Cliffords are composed from the
two-qubit CZ gate, and the single-qubit gate sets C1, S1, SY/21 ,
and SX/21 . The respective errors are given by: rS1

= 5rSQ/3,
r
S

X/2
1

= 5rSQ/3, r
S

Y/2
1

= 2rSQ.
We now derive the average gate composition for the two-qubit

Cliffords. For the single-qubit class:

rC1⊗C1
=

90

24
rSQ. (S4)

CNOT-like class:

rCNOT = rCZ +
89

12
rSQ. (S5)

iSWAP-like class:

riSWAP = 2rCZ +
113

12
rSQ. (S6)

SWAP-like class:

rSWAP = 3rCZ +
35

4
rSQ. (S7)

The error per Clifford for C2 is then given by

rC2
=

576

11520
rC1⊗C1

+
5184

11520
rCNOT+ (S8)

5184

11520
riSWAP +

576

11520
rSWAP (S9)

=
3

2
rCZ +

33

4
rSQ. (S10)

And the error per two-qubit Cliffords interleaved with a CZ is

rC2+CZ =
5

2
rCZ +

33

4
rSQ. (S11)

Comparison to Experiment

Using these simple formulas, we find that our randomised
benchmarking data are self-consistent. Using reasonable values
of 0.001 and 0.006 for the single and two-qubit gates respec-
tively, we calculate rC2 = 0.0173, which is close to the exper-
imental value of rref = 0.0189 in Fig. 3 in the main Letter; for
the interleaved case the calculated value of rC2+CZ = 0.0233 is
close to the experimental value of 0.0244 as well.

N = 5 GHZ STATE PULSE SEQUENCE

The pulse sequence for the algorithm to construct the five
qubit GHZ state is shown in Fig. S7a. We use Hahn spin echoes
on idling elements to suppress slow dephasing (Tφ,2). The fre-
quency diagram for the qubits is shown in Fig. S7b. Nearest
neighbour qubits are detuned by 0.7 to 1.5 GHz, next-nearest
neighbours are detuned by 0.4 to 0.5 GHz.
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FIG. S7: Pulse sequence for generating theN = 5 GHZ state and frequency diagram. (a) The control signals for all five qubits. The algorithm
consists of a Y/2 pulse on Q0 followed by successive CNOT gates (implemented here with a CZ gate and -Y/2, Y/2 gates applied to the target)
on each progressive pair of qubits in the array. The highlighted region (I) shows Hahn spin echo pulses X applied to Q0 to suppress dephasing
while idling. Spin echo pulses are also applied to Q1 and Q2. (II) We detune Q1 to bring it closer in frequency to Q2 for the CZ gate. (III)
Simultaneously with the Q1-Q2 entangling operation, we detune Q3 away to allow for selective entanglement. (b) The frequency diagram shows
the idling frequencies for all qubits, and is one of the operating modes of the quantum processor.

QUANTUM STATE TOMOGRAPHY

The density matrices of the N = 2 Bell and N = 3, 4, 5
GHZ states are characterised using quantum state tomography.
After state preparation, gates from { I, X/2, Y/2, X }⊗N are
applied; with the measured probabilities the state can then be
reconstructed. We use quadratic maximum likelihood estima-
tion, using the MATLAB packages SeDuMi and YALMIP, to
extract the density matrix while constraining it to be Hermitian,
unit trace, and positive semidefinite; the estimation is overcon-
strained. Non-idealities in measurement and state preparation
are suppressed by performing tomography on a zero-time idle
[10, 11]. We note that tomography is only “as good as” the
tomography pulses, which have an average fidelity above 0.999.
Fidelities and uncertainties correspond to the mean and standard
deviation of 10 measurements, consisting of 104 (N = 2, 3)
or 6 · 103 (N = 4, 5) repetitions each. The density matrices
plotted in the main article are constructed by averaging all mea-
sured probabilites, effectively using 105 (N = 2, 3) or 6 · 104

(N = 4, 5) repetitions.
The imaginary part of the density matrices (ρ) is plotted in

Fig. S8. The Pauli operator representation is shown in Fig. S9.
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