1,275 research outputs found

    Periodic-Orbit Theory of Anderson Localization on Graphs

    Full text link
    We present the first quantum system where Anderson localization is completely described within periodic-orbit theory. The model is a quantum graph analogous to an a-periodic Kronig-Penney model in one dimension. The exact expression for the probability to return of an initially localized state is computed in terms of classical trajectories. It saturates to a finite value due to localization, while the diagonal approximation decays diffusively. Our theory is based on the identification of families of isometric orbits. The coherent periodic-orbit sums within these families, and the summation over all families are performed analytically using advanced combinatorial methods.Comment: 4 pages, 3 figures, RevTe

    Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology

    Get PDF
    We develop a gauge invariant canonical perturbation scheme for perturbations around symmetry reduced sectors in generally covariant theories, such as general relativity. The central objects of investigation are gauge invariant observables which encode the dynamics of the system. We apply this scheme to perturbations around a homogeneous and isotropic sector (cosmology) of general relativity. The background variables of this homogeneous and isotropic sector are treated fully dynamically which allows us to approximate the observables to arbitrary high order in a self--consistent and fully gauge invariant manner. Methods to compute these observables are given. The question of backreaction effects of inhomogeneities onto a homogeneous and isotropic background can be addressed in this framework. We illustrate the latter by considering homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a homogeneous and isotropic sector.Comment: 39 pages, 1 figur

    Theory of 2δ\delta-kicked Quantum Rotors

    Get PDF
    We examine the quantum dynamics of cold atoms subjected to {\em pairs} of closely spaced δ\delta-kicks from standing waves of light, and find behaviour quite unlike the well-studied quantum kicked rotor (QKR). Recent experiments [Jones et al, {\em Phys. Rev. Lett. {\bf 93}, 223002 (2004)}] identified a regime of chaotic, anomalous classical diffusion. We show that the corresponding quantum phase-space has a cellular structure, arising from a unitary matrix with oscillating band-width. The corresponding eigenstates are exponentially localized, but scale with a fractional power, L0.75L \sim \hbar^{-0.75}, in contrast to the QKR for which L1L \sim \hbar^{-1}. The effect of inter-cell (and intra-cell) transport is investigated by studying the spectral fluctuations with both periodic as well as `open' boundary conditions.Comment: 12 pages with 14 figure

    Dynamical localization, measurements and quantum computing

    Full text link
    We study numerically the effects of measurements on dynamical localization in the kicked rotator model simulated on a quantum computer. Contrary to the previous studies, which showed that measurements induce a diffusive probability spreading, our results demonstrate that localization can be preserved for repeated single-qubit measurements. We detect a transition from a localized to a delocalized phase, depending on the system parameters and on the choice of the measured qubit.Comment: 4 pages, 4 figures, research at Quantware MIPS Center http://www.quantware.ups-tlse.f

    Comparison of QG-Induced Dispersion with Standard Physics Effects

    Full text link
    One of the predictions of quantum gravity phenomenology is that, in situations where Planck-scale physics and the notion of a quantum spacetime are relevant, field propagation will be described by a modified set of laws. Descriptions of the underlying mechanism differ from model to model, but a general feature is that electromagnetic waves will have non-trivial dispersion relations. A physical phenomenon that offers the possibility of experimentally testing these ideas in the foreseeable future is the propagation of high-energy gamma rays from GRB's at cosmological distances. With the observation of non-standard dispersion relations within experimental reach, it is thus important to find out whether there are competing effects that could either mask or be mistaken for this one. In this letter, we consider possible effects from standard physics, due to electromagnetic interactions, classical as well as quantum, and coupling to classical geometry. Our results indicate that, for currently observed gamma-ray energies and estimates of cosmological parameter values, those effects are much smaller than the quantum gravity one if the latter is first-order in the energy; some corrections are comparable in magnitude with the second-order quantum gravity ones, but they have a very different energy dependence.Comment: 8 pages; Version to be published in CQG as a letter; Includes some new comments and references, but no changes in the result

    Distribution of "level velocities" in quasi 1D disordered or chaotic systems with localization

    Full text link
    The explicit analytical expression for the distribution function of parametric derivatives of energy levels ("level velocities") with respect to a random change of scattering potential is derived for the chaotic quantum systems belonging to the quasi 1D universality class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).Comment: 11 pages, REVTEX 3.

    Emergent diffeomorphism invariance in a discrete loop quantum gravity model

    Get PDF
    Several approaches to the dynamics of loop quantum gravity involve discretizing the equations of motion. The resulting discrete theories are known to be problematic since the first class algebra of constraints of the continuum theory becomes second class upon discretization. If one treats the second class constraints properly, the resulting theories have very different dynamics and number of degrees of freedom than those of the continuum theory. It is therefore questionable how these theories could be considered a starting point for quantization and the definition of a continuum theory through a continuum limit. We show explicitly in a model that the {\em uniform discretizations} approach to the quantization of constrained systems overcomes these difficulties. We consider here a simple diffeomorphism invariant one dimensional model and complete the quantization using {\em uniform discretizations}. The model can be viewed as a spherically symmetric reduction of the well known Husain--Kucha\v{r} model of diffeomorphism invariant theory. We show that the correct quantum continuum limit can be satisfactorily constructed for this model. This opens the possibility of treating 1+1 dimensional dynamical situations of great interest in quantum gravity taking into account the full dynamics of the theory and preserving the space-time covariance at a quantum level.Comment: 12 pages, Revte

    Ring diagrams and electroweak phase transition in a magnetic field

    Full text link
    Electroweak phase transition in a magnetic field is investigated within the one-loop and ring diagram contributions to the effective potential in the minimal Standard Model. All fundamental fermions and bosons are included with their actual values of masses and the Higgs boson mass is considered in the range 75GeVmH115GeV75 GeV \leq m_H \leq 115 GeV. The effective potential is real at sufficiently high temperature. The important role of fermions and WW-bosons in symmetry behaviour is observed. It is found that the phase transition for the field strengths 1023102410^{23} - 10^{24}G is of first order but the baryogenesis condition is not satisfied. The comparison with the hypermagnetic field case is done.Comment: 16 pages, Latex, changed for a mistake in the numerical par

    Enhancement of vacuum polarization effects in a plasma

    Get PDF
    The dispersive effects of vacuum polarization on the propagation of a strong circularly polarized electromagnetic wave through a cold collisional plasma are studied analytically. It is found that, due to the singular dielectric features of the plasma, the vacuum effects on the wave propagation in a plasma are qualitatively different and much larger than those in pure vacuum in the regime when the frequency of the propagating wave approaches the plasma frequency. A possible experimental setup to detect these effects in plasma is described.Comment: 33 pages, 3 figure

    Non-commutative flux representation for loop quantum gravity

    Get PDF
    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.Comment: 12 pages, matches published versio
    corecore