887 research outputs found
Non-equilibrium raft-like membrane domains under continuous recycling
We present a model for the kinetics of spontaneous membrane domain (raft)
assembly that includes the effect of membrane recycling ubiquitous in living
cells. We show that the domains have a broad power-law distribution with an
average radius that scales with the 1/4 power of the domain lifetime when the
line tension at the domain edges is large. For biologically reasonable
recycling and diffusion rates the average domain radius is in the tens of nm
range, consistent with observations. This represents one possible link between
signaling (involving rafts) and traffic (recycling) in cells. Finally, we
present evidence that suggests that the average raft size may be the same for
all scale-free recycling schemes.Comment: 8 pages, 5 figure
Toward Forecasting Volcanic Eruptions using Seismic Noise
During inter-eruption periods, magma pressurization yields subtle changes of
the elastic properties of volcanic edifices. We use the reproducibility
properties of the ambient seismic noise recorded on the Piton de la Fournaise
volcano to measure relative seismic velocity variations of less than 0.1 % with
a temporal resolution of one day. Our results show that five studied volcanic
eruptions were preceded by clearly detectable seismic velocity decreases within
the zone of magma injection. These precursors reflect the edifice dilatation
induced by magma pressurization and can be useful indicators to improve the
forecasting of volcanic eruptions.Comment: Supplementary information:
http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary
video:
http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av
Differential expression of human metallothionein isoform I mRNA in human proximal tubule cells exposed to metals.
In contrast to the single metallothionein (MT)-1 gene of the mouse, the human MT-1 gene family is composed of seven active genes and six pseudogenes. In this study, the expression of mRNA representing the seven active human MT-1 genes was determined in cultured human proximal tubule (HPT) cells under basal conditions and after exposure to the metals Cd2+, Zn2+, Cu2+, Hg2+, Ag2+, and Pb2+. Basal expression of MT-1X and MT-1E mRNA in HPT cells was similar to expression of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase. In contrast, mRNAs representing the basal expression of MT-1A and MT-1F were a minor transcript in HPT cells. Treatment of HPT cells with Cd2+, Zn2+, or Cu2+ increased the levels of MT-1E and MT-1A mRNA, but not the levels of MT-1X or MT-1F mRNA. The increase in MT-1E mRNA appeared to be influenced mainly by exposure to the various metals, whereas the increase in MT-1A mRNA was influenced more by exposure to a metal concentration eliciting a loss of cell viability. Treatment of HPT cells with the metals Hg2+, Ag2+, and Pb2+ was found to have no effect on the level of MT-1 mRNA at either sublethal or lethal concentrations. Using HPT cells as a model, these results suggest that new features of MT gene expression have been acquired in the human due to the duplication of the MT-1 gene
Differential expression of human metallothionein isoform I mRNA in human proximal tubule cells exposed to metals.
In contrast to the single metallothionein (MT)-1 gene of the mouse, the human MT-1 gene family is composed of seven active genes and six pseudogenes. In this study, the expression of mRNA representing the seven active human MT-1 genes was determined in cultured human proximal tubule (HPT) cells under basal conditions and after exposure to the metals Cd2+, Zn2+, Cu2+, Hg2+, Ag2+, and Pb2+. Basal expression of MT-1X and MT-1E mRNA in HPT cells was similar to expression of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase. In contrast, mRNAs representing the basal expression of MT-1A and MT-1F were a minor transcript in HPT cells. Treatment of HPT cells with Cd2+, Zn2+, or Cu2+ increased the levels of MT-1E and MT-1A mRNA, but not the levels of MT-1X or MT-1F mRNA. The increase in MT-1E mRNA appeared to be influenced mainly by exposure to the various metals, whereas the increase in MT-1A mRNA was influenced more by exposure to a metal concentration eliciting a loss of cell viability. Treatment of HPT cells with the metals Hg2+, Ag2+, and Pb2+ was found to have no effect on the level of MT-1 mRNA at either sublethal or lethal concentrations. Using HPT cells as a model, these results suggest that new features of MT gene expression have been acquired in the human due to the duplication of the MT-1 gene
The impact of lepton-flavor violating Z' bosons on muon g-2 and other muon observables
A lepton-flavor violating (LFV) Z' boson may mimic some of the phenomena
usually attributed to supersymmetric theories. Using a conservative model of
LFV Z' bosons, the recent BNL E821 muon g-2 deviation allows for a LFV Z'
interpretation with a boson mass up to 4.8 TeV while staying within limits set
by muon conversion, mu -> e gamma, and mu -> eee. This model is immediately
testable as one to twenty e^+e^- -> mu tau events are predicted for an analysis
of the LEP II data. Future muon conversion experiments, MECO and PRIME, are
demonstrated to have potential to probe very high boson masses with very small
charges, such as a 10 TeV boson with an e-mu charge of 10^-5. Furthermore, the
next linear collider is shown to be highly complementary with muon conversion
experiments, which are shown to provide the strictest and most relevant bounds
on LFV phenomena.Comment: 17 pages, 6 figures, uses feynMF, edited references (v2), corrected
MEGA experimental limit (v3), accepted to Phys. Rev.
Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane
We discuss the electrostatic contribution to the elastic moduli of a cell or
artificial membrane placed in an electrolyte and driven by a DC electric field.
The field drives ion currents across the membrane, through specific channels,
pumps or natural pores. In steady state, charges accumulate in the Debye layers
close to the membrane, modifying the membrane elastic moduli. We first study a
model of a membrane of zero thickness, later generalizing this treatment to
allow for a finite thickness and finite dielectric constant. Our results
clarify and extend the results presented in [D. Lacoste, M. Cosentino
Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by
providing a physical explanation for a destabilizing term proportional to
\kps^3 in the fluctuation spectrum, which we relate to a nonlinear ()
electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent
studies of ICEO have focused on electrodes and polarizable particles, where an
applied bulk field is perturbed by capacitive charging of the double layer and
drives flow along the field axis toward surface protrusions; in contrast, we
predict "reverse" ICEO flows around driven membranes, due to curvature-induced
tangential fields within a non-equilibrium double layer, which hydrodynamically
enhance protrusions. We also consider the effect of incorporating the dynamics
of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ
- …
