34,677 research outputs found
Compression of Martian atmosphere for production of oxygen
The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work
Monastic hospitality : explorations
In a theoretical model, religious retreats are placed by Lynch (2005a) within the category of traditional commercial homes, noting that the essence of a commercial home is the use of the home as a vehicle for generating income. Lynch (2005b:539) describes the 'commercial home host' as "the principal contact whom the guest encounters when staying in the commercial home," and further states that "the host is central to the product experience in commercial homes. Successful stays from a guest perspective are dependent upon the quality of host-guest interactions" (Lynch 2005c:541). This chapter explores the provision of hospitality within Benedictine Monastries in order to contribute to insights on the commercial home, and starts by locating them within the context of literature on religious tourism and the umbrella term 'religious retreat house'
Adaptive evolution of molecular phenotypes
Molecular phenotypes link genomic information with organismic functions,
fitness, and evolution. Quantitative traits are complex phenotypes that depend
on multiple genomic loci. In this paper, we study the adaptive evolution of a
quantitative trait under time-dependent selection, which arises from
environmental changes or through fitness interactions with other co-evolving
phenotypes. We analyze a model of trait evolution under mutations and genetic
drift in a single-peak fitness seascape. The fitness peak performs a
constrained random walk in the trait amplitude, which determines the
time-dependent trait optimum in a given population. We derive analytical
expressions for the distribution of the time-dependent trait divergence between
populations and of the trait diversity within populations. Based on this
solution, we develop a method to infer adaptive evolution of quantitative
traits. Specifically, we show that the ratio of the average trait divergence
and the diversity is a universal function of evolutionary time, which predicts
the stabilizing strength and the driving rate of the fitness seascape. From an
information-theoretic point of view, this function measures the
macro-evolutionary entropy in a population ensemble, which determines the
predictability of the evolutionary process. Our solution also quantifies two
key characteristics of adapting populations: the cumulative fitness flux, which
measures the total amount of adaptation, and the adaptive load, which is the
fitness cost due to a population's lag behind the fitness peak.Comment: Figures are not optimally displayed in Firefo
Aerosol studies in mid-latitude coastal environments in Australia
The results of the evaluation of several inversion procedures that were used to select one which provides the most accurate atmospheric extinction profiles for small aerosol extinction coefficients (that often predominate in the maritime airmass) are presented. Height profiles of atmospheric extinction calculated by a two component atmospheric solution to the LIDAR equation will be compared with corresponding in-situ extinction profiles based on the size distribution profiles obtained in Western Australia. Values of the aerosol backscatter to extinction ratio obtained from multi-angle LIDAR measurements will be used in this solution
Bulk photonic metamaterial with hyperbolic dispersion
In this work, we demonstrate a self-standing bulk three-dimensional
metamaterial based on the network of silver nanowires in an alumina membrane.
This constitutes an anisotropic effective medium with hyperbolic dispersion,
which can be used in sub-diffraction imaging or optical cloaks. Highly
anisotropic dielectric constants of the material range from positive to
negative, and the transmitted laser beam shifts both toward the normal to the
surface, as in regular dielectrics, and off the normal, as in anisotropic
dielectrics with the refraction index smaller than one. The designed photonic
metamaterial is the thickest reported in the literature, both in terms of its
physical size 1cm x 1cm x 51 mm, and the number of vacuum wavelengths, N=61 at
l=0.84 mm.Comment: 6 pages, 4 figur
Submicrosecond comparisons of time standards via the Navigation Technology Satellites (NTS)
An interim demonstration was performed of the time transfer capability of the NAVSTAR GPS system using a single NTS satellite. Measurements of time difference (pseudo-range) are made from the NTS tracking network and at the participating observatories. The NTS network measurements are used to compute the NTS orbit trajectory. The central NTS tracking station has a time link to the Naval Observatory UTC (USNO,MC1) master clock. Measurements are used with the NTS receiver at the remote observatory, the time transfer value UTC (USNO,MC1)-UTC (REMOTE, VIA NTS) is calculated. Intercomparisons were computed using predicted values of satellite clock offset and ephemeus
An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults
This paper explores the problem of reaching approximate consensus in
synchronous point-to-point networks, where each pair of nodes is able to
communicate with each other directly and reliably. We consider the mobile
Byzantine fault model proposed by Garay '94 -- in the model, an omniscient
adversary can corrupt up to nodes in each round, and at the beginning of
each round, faults may "move" in the system (i.e., different sets of nodes may
become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a
simple iterative approximate consensus algorithm which requires at least
nodes. This paper proposes a novel technique of using "confession" (a mechanism
to allow others to ignore past behavior) and a variant of reliable broadcast to
improve the fault-tolerance level. In particular, we present an approximate
consensus algorithm that requires only nodes, an
improvement over the state-of-the-art algorithms.
Moreover, we also show that the proposed algorithm is optimal within a family
of round-based algorithms
Physicochemical and microbiological characteristics of kitoza, a traditional salted/dried/smoked meat product of Madagascar
Kitoza samples collected from producers in Madagascar were analyzed for their physicochemical and microbial properties. Lactic acid bacteria and coagulase‐negative staphylococci were the two codominant populations with average counts of 6–7 log cfu/g. Good hygienic practices were sometimes lacking but samples were not contaminated with Salmonella, Clostridium perfringens, and Bacillus cereus and only once with Listeria monocytogenes. Staphylococcus aureus was found occasionally with higher counts in salted/dried products than in salted/smoked products. Moisture, protein, fat, and salt contents varied considerably and were on average 41.5, 43.5, 14.3, and 3.3 g/100 g, respectively, and water activity was 0.893 on average. Smoked kitoza showed higher moisture content compared to dried kitoza. Most of the smoked kitoza had a water activity higher than 0.9 which is not in accordance with their storage at ambient temperatures. Benzo(a)pyrene content was above 2 µg/kg in 11 out of 30 smoked samples (17 ± 16.5 µg/kg on average)
- …
