711 research outputs found

    Bayesian Analysis for Extracting Properties of the Nuclear Equation of State from Observational Data including Tidal Deformability from GW170817

    Full text link
    We develop a Bayesian analysis method for selecting the most probable equation of state under a set of constraints from compact star physics, which now include the tidal deformability from GW170817. We apply this method for the first time to a two-parameter family of hybrid equations of state that is based on realistic models for the hadronic phase (KVORcut02) and the quark matter phase (SFMα\alpha) which produce a third family of hybrid stars in the mass-radius diagram. One parameter (α\alpha) characterizes the screening of the string tension in the string-flip model of quark matter while the other (ΔP\Delta_P) belongs to the mixed phase construction that mimics the thermodynamics of pasta phases and includes the Maxwell construction as a limiting case for ΔP=0\Delta_P=0. We present the corresponding results for compact star properties like mass, radius and tidal deformabilities and use empirical data for them in the newly developed Bayesian analysis method to obtain the probabilities for the model parameters within their considered range.Comment: 8 pages, 4 figures, version accepted for publication in univers

    Robustness of third family solutions for hybrid stars against mixed phase effects

    Full text link
    We investigate the robustness of third family solutions for hybrid compact stars with a quark matter core that correspond to the occurrence of high-mass twin stars against a softening of the phase transition by means of a construction that mimics the effects of pasta structures in the mixed phase. We consider a class of hybrid equations of state that exploits a relativistic mean-field model for the hadronic as well as for the quark matter phase. We present parametrizations that correspond to branches of high-mass twin star pairs with maximum masses between 2.05 M2.05~M_\odot and 1.48 M1.48~M_\odot having radius differences between 3.2 km and 1.5 km, respectively. When compared to a Maxwell construction with a fixed value of critical pressure PcP_c the effect of the mixed phase construction consists in the occurrence of a region of pressures around PcP_c belonging to the coexistence of hadronic and quark matter phases between the onset pressure at PHP_H and the end of the transition at PQP_Q. The maximum broadening which would still allow mass twin compact stars is found to be (PQPH)maxPc(P_Q-P_H)_{\rm max} \approx P_c for all parametrizations within the present class of models. At least the heavier of the neutron stars of the binary merger GW170817 could have been a member of the third family of hybrid stars.Comment: 8 pages, 8 figures, revised version as published in Phys. Rev. D, references update

    Vector interaction, charge neutrality and multiple chiral critical point structures

    Full text link
    We investigate the combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition by considering neutral color superconductivity (CSC). The chiral condensate, diquark condensate and quark number densities are solved in both two-flavor and two-plus-one-flavor Nambu-Jona-Lasinio(NJL) models with the so called Kobayashi-Maskawa-'t Hooft term under the charge neutrality constraint. We demonstrate that multiple chiral critical-point structures always exist in the NJL model within the self-consistent mean-field approximation and the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling. The difference between the dynamical chemical potentials induced by vector interaction for u and d quarks can effectively reduce the Fermi sphere disparity between the two flavors of diquark paring. Thus the vector interaction works to significantly suppress the unstable region associated with chromomagnetic instability in the phase of neutral asymmetric homogenous CSC.Comment: version for Phys. Rev.

    Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

    Full text link
    A new scheme for testing nuclear matter equations of state (EsoS) at high densities using constraints from neutron star phenomenology and a flow data analysis of heavy-ion collisions is suggested. An acceptable EoS shall not allow the direct Urca process to occur in neutron stars with masses below 1.5 M1.5~M_{\odot}, and also shall not contradict flow and kaon production data of heavy-ion collisions. Compact star constraints include the mass measurements of 2.1 +/- 0.2 M_sun (1 sigma level) for PSR J0751+1807, of 2.0 +/- 0.1 M_sun from the innermost stable circular orbit for 4U 1636-536, the baryon mass - gravitational mass relationships from Pulsar B in J0737-3039 and the mass-radius relationships from quasiperiodic brightness oscillations in 4U 0614+09 and from the thermal emission of RX J1856-3754. This scheme is applied to a set of relativistic EsoS constrained otherwise from nuclear matter saturation properties with the result that no EoS can satisfy all constraints simultaneously, but those with density-dependent masses and coupling constants appear most promising.Comment: 15 pages, 8 figures, 5 table

    How strange are compact star interiors ?

    Full text link
    We discuss a Nambu--Jona-Lasinio (NJL) type quantum field theoretical approach to the quark matter equation of state with color superconductivity and construct hybrid star models on this basis. It has recently been demonstrated that with increasing baryon density, the different quark flavors may occur sequentially, starting with down-quarks only, before the second light quark flavor and at highest densities also the strange quark flavor appears. We find that color superconducting phases are favorable over non-superconducting ones which entails consequences for thermodynamic and transport properties of hybrid star matter. In particular, for NJL-type models no strange quark matter phases can occur in compact star interiors due to mechanical instability against gravitational collapse, unless a sufficiently strong flavor mixing as provided by the Kobayashi-Maskawa-'t Hooft determinant interaction is present in the model. We discuss observational data on mass-radius relationships of compact stars which can put constraints on the properties of dense matter equation of state.Comment: 7 pages, 2 figures, to appear in the Proceedings of the International Conference SQM2009, Buzios, Rio de Janeiro, Brazil, Sep.27-Oct.2, 200

    The effective action and quantum gauge transformations

    Get PDF
    The local symmetry transformations of the quantum effective action for general gauge theory are found. Additional symmetries arise under consideration of background gauges. Together with "trivial" gauge transformations, vanishing on mass shell, they can be used for construction simple gauge generators. For example, for the Yang-Mills theory the classically invariant effective action is obtained, reproducing DeWitt's result. For rank one theories a natural generalization is proposed.Comment: Revtex, 11 pages; added reference

    Recent progress constraining the nuclear equation of state from astrophysics and heavy ion reactions

    Full text link
    The quest for the nuclear equation of state (EoS) at high densities and/or extreme isospin is one of the longstanding problems of nuclear physics. Ab initio calculations for the nuclear many-body problem make predictions for the density and isospin dependence of the EoS far away from the saturation point of nuclear matter. On the other hand, in recent years substantial progress has been mode to constrain the EoS both, from the astrophysical side and from accelerator based experiments. Heavy ion experiments support a soft EoS at moderate densities while recent neutron star observations require a ``stiff'' high density behavior. Both constraints are discussed and shown to be in agreement with the predictions from many-body theory.Comment: Invited talk given at NPA III, Dresden, Germany, March 200

    Spin-one color superconductivity in compact stars?- an analysis within NJL-type models

    Full text link
    We present results of a microscopic calculation using NJL-type model of possible spin-one pairings in two flavor quark matter for applications in compact star phenomenology. We focus on the color-spin locking phase (CSL) in which all quarks pair in a symmetric way, in which color and spin states are locked. The CSL condensate is particularly interesting for compact star applications since it is flavor symmetric and could easily satisfy charge neutrality. Moreover, the fact that in this phase all quarks are gapped might help to suppress the direct Urca process, consistent with cooling models. The order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but their also small critical temperatures (T_c ~800 keV) could be relevant in the late stages neutron star evolution, when the temperature falls below this value and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference Proceedings of "Isolated Neutron Stars: from the Interior to the Surface", London, 24-28. April 200
    corecore