1,970 research outputs found

    Anomalous relaxation kinetics and charge density wave correlations in underdoped BaPb1-xBixO3

    Full text link
    Superconductivity often emerges in proximity of other symmetry-breaking ground states, such as antiferromagnetism or charge-density-wave (CDW) order. However, the subtle inter-relation of these phases remains poorly understood, and in some cases even the existence of short-range correlations for superconducting compositions is uncertain. In such circumstances, ultrafast experiments can provide new insights, by tracking the relaxation kinetics following excitation at frequencies related to the broken symmetry state. Here, we investigate the transient terahertz conductivity of BaPb1-xBixO3 - a material for which superconductivity is adjacent to a competing CDW phase - after optical excitation tuned to the CDW absorption band. In insulating BaBiO3 we observed an increase in conductivity and a subsequent relaxation, which are consistent with quasiparticles injection across a rigid semiconducting gap. In the doped compound BaPb0.72Bi0.28O3 (superconducting below Tc=7K), a similar response was also found immediately above Tc. This observation evidences the presence of a robust gap up to T=40 K, which is presumably associated with short-range CDW correlations. A qualitatively different behaviour was observed in the same material fo T>40 K. Here, the photo-conductivity was dominated by an enhancement in carrier mobility at constant density, suggestive of melting of the CDW correlations rather than excitation across an optical gap. The relaxation displayed a temperature dependent, Arrhenius-like kinetics, suggestive of the crossing of a free-energy barrier between two phases. These results support the existence of short-range CDW correlations above Tc in underdoped BaPb1-xBixO3, and provide new information on the dynamical interplay between superconductivity and charge order.Comment: 19 pages, 4 figure

    Integral measurement of the 12C(n, p)12B reaction up to 10 GeV

    Get PDF
    The integral measurement of the 12C(n, p)12B reaction was performed at the neutron time-offlight facility n TOF at CERN. The total number of 12B nuclei produced per neutron pulse of the n TOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the 235U(n, f) reaction, the neutron energy spectrum above 200 MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the 12C(n, p)12B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the 12B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.European Atomic Energy Communitys (Euratom) Seventh Framework Programme FP7/2007-2011-CHANDA (No. 605203)Narodowe Centrum Nauki (NCN)-UMO-2012/04/M/ST2/00700Croatian Science Foundation-No. 168

    Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    Get PDF
    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an 241Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program

    Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows

    No full text
    We present a review of the semi-Lagrangian method for advection-diusion and incompressible Navier-Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable

    Phenomenology of a three-family model with gauge symmetry SU(3)_c X SU(4)_L X U(1)_X

    Full text link
    We study an extension of the gauge group SU(3)_c X SU(2)_L X U(1)_Y of the standard model to the symmetry group SU(3)_c X SU(4)_L X U(1)_X (3-4-1 for short). This extension provides an interesting attempt to answer the question of family replication in the sense that models for the electroweak interaction can be constructed so that anomaly cancellation is achieved by an interplay between generations, all of them under the condition that the number of families must be divisible by the number of colours of SU(3)_c. This method of anomaly cancellation requires a family of quarks transforming differently from the other two, thus leading to tree-level flavour changing neutral currents (FCNC) transmitted by the two extra neutral gauge bosons Z′Z' and Z′′Z'' predicted by the model. In a version of the 3-4-1 extension, which does not contain particles with exotic electric charges, we study the fermion mass spectrum and some aspects of the phenomenology of the neutral gauge boson sector. In particular, we impose limits on the Z−Z′Z-Z' mixing angle and on the mass scale of the corresponding physical new neutral gauge boson Z2Z_2, and establish a lower bound on the mass of the additional new neutral gauge boson Z′′≡Z3Z'' \equiv Z_3. For the analysis we use updated precision electroweak data at the Z-pole from the CERN LEP and SLAC Linear Collider, and atomic parity violation data. The mass scale of the additional new neutral gauge boson Z3Z_3 is constrained by using updated experimental inputs from neutral meson mixing in the analysis of the sources of FCNC in the model. The data constrain the Z−Z′Z-Z' mixing angle to a very small value of O(0.001), and the lower bounds on MZ2M_{Z_2} and on MZ3M_{Z_3} are found to be of O(1 TeV) and of O(7 TeV), repectively.Comment: 22 pages, 6 tables, 1 figure. To appear in J. Phys. G: Nuclear and Particle Physic
    • …
    corecore