52,978 research outputs found
Full counting statistics and conditional evolution in a nanoelectromechanical system
We study theoretically the full distribution of transferred charge in a
tunnel junction (or quantum point contact) coupled to a nanomechanical
oscillator, as well as the conditional evolution of the oscillator. Even if the
oscillator is very weakly coupled to the tunnel junction, it can strongly
affect the tunneling statistics and lead to a highly non-Gaussian distribution.
Conversely, given a particular measurement history of the current, the
oscillator energy distribution may be localized and highly non-thermal. We also
discuss non-Gaussian correlations between the oscillator motion and tunneling
electrons; these show that the tunneling back-action cannot be fully described
as an effective thermal bath coupled to the oscillator.Comment: 7 pages; figure added; typos correcte
Recommended from our members
An Ontology for Grounding Vague Geographic Terms
Many geographic terms, such as “river” and “lake”, are vague, with no clear boundaries of application. In particular, the spatial extent of such features is often vaguely carved out of a continuously varying observable domain. We present a means of defining vague terms using standpoint semantics, a refinement of the
philosophical idea of supervaluation semantics. Such definitions can be grounded in actual data by geometric analysis and segmentation of the data set. The issues
raised by this process with regard to the nature of boundaries and domains of logical quantification are discussed. We describe a prototype implementation of a system capable of segmenting attributed polygon data into geographically significant regions and evaluating queries involving vague geographic feature terms
Scaling Laws for Non-Intercommuting Cosmic String Networks
We study the evolution of non-interacting and entangled cosmic string
networks in the context of the velocity-dependent one-scale model. Such
networks may be formed in several contexts, including brane inflation. We show
that the frozen network solution , although generic, is only a
transient one, and that the asymptotic solution is still as in the
case of ordinary (intercommuting) strings, although in the present context the
universe will usually be string-dominated. Thus the behaviour of two strings
when they cross does not seem to affect their scaling laws, but only their
densities relative to the background.Comment: Phys. Rev. D (in press); v2: final published version (references
added, typos corrected
The Initial Value Problem For Maximally Non-Local Actions
We study the initial value problem for actions which contain non-trivial
functions of integrals of local functions of the dynamical variable. In
contrast to many other non-local actions, the classical solution set of these
systems is at most discretely enlarged, and may even be restricted, with
respect to that of a local theory. We show that the solutions are those of a
local theory whose (spacetime constant) parameters vary with the initial value
data according to algebraic equations. The various roots of these algebraic
equations can be plausibly interpreted in quantum mechanics as different
components of a multi-component wave function. It is also possible that the
consistency of these algebraic equations imposes constraints upon the initial
value data which appear miraculous from the context of a local theory.Comment: 8 pages, LaTeX 2 epsilo
Entanglement Swapping Chains for General Pure States
We consider entanglement swapping schemes with general (rather than
maximally) entangled bipartite states of arbitary dimension shared pairwise
between three or more parties in a chain. The intermediate parties perform
generalised Bell measurements with the result that the two end parties end up
sharing a entangled state which can be converted into maximally entangled
states. We obtain an expression for the average amount of maximal entanglement
concentrated in such a scheme and show that in a certain reasonably broad class
of cases this scheme is provably optimal and that, in these cases, the amount
of entanglement concentrated between the two ends is equal to that which could
be concentrated from the weakest link in the chain.Comment: 18 pages, 5 figure
A Closed-Form Expression for the Gravitational Radiation Rate from Cosmic Strings
We present a new formula for the rate at which cosmic strings lose energy
into gravitational radiation, valid for all piecewise-linear cosmic string
loops. At any time, such a loop is composed of straight segments, each of
which has constant velocity. Any cosmic string loop can be arbitrarily-well
approximated by a piecewise-linear loop with sufficiently large. The
formula is a sum of polynomial and log terms, and is exact when the
effects of gravitational back-reaction are neglected. For a given loop, the
large number of terms makes evaluation ``by hand" impractical, but a computer
or symbolic manipulator yields accurate results. The formula is more accurate
and convenient than previous methods for finding the gravitational radiation
rate, which require numerical evaluation of a four-dimensional integral for
each term in an infinite sum. It also avoids the need to estimate the
contribution from the tail of the infinite sum. The formula has been tested
against all previously published radiation rates for different loop
configurations. In the cases where discrepancies were found, they were due to
errors in the published work. We have isolated and corrected both the analytic
and numerical errors in these cases. To assist future work in this area, a
small catalog of results for some simple loop shapes is provided.Comment: 29 pages TeX, 16 figures and computer C-code available via anonymous
ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-10,
(section 7 has been expanded, two figures added, and minor grammatical
changes made.
The Parity Bit in Quantum Cryptography
An -bit string is encoded as a sequence of non-orthogonal quantum states.
The parity bit of that -bit string is described by one of two density
matrices, and , both in a Hilbert space of
dimension . In order to derive the parity bit the receiver must
distinguish between the two density matrices, e.g., in terms of optimal mutual
information. In this paper we find the measurement which provides the optimal
mutual information about the parity bit and calculate that information. We
prove that this information decreases exponentially with the length of the
string in the case where the single bit states are almost fully overlapping. We
believe this result will be useful in proving the ultimate security of quantum
crytography in the presence of noise.Comment: 19 pages, RevTe
On Multipartite Pure-State Entanglement
We show that pure states of multipartite quantum systems are multiseparable
(i.e. give separable density matrices on tracing any party) if and only if they
have a generalized Schmidt decomposition. Implications of this result for the
quantification of multipartite pure-state entanglement are discussed. Further,
as an application of the techniques used here, we show that any purification of
a bipartite PPT bound entangled state is tri-inseparable, i.e. has none of its
three bipartite partial traces separable.Comment: 8 Pages ReVTeX, 4 figures (eps); v2: Revised terminology, added two
references and other minor changes; v3: Minor changes, added two references,
added author's middle initial; v4: One footnote remove
Entangled Mixed States and Local Purification
Linden, Massar and Popescu have recently given an optimization argument to
show that a single two-qubit Werner state, or any other mixture of the
maximally entangled Bell states, cannot be purified by local operations and
classical communications. We generalise their result and give a simple
explanation. In particular, we show that no purification scheme using local
operations and classical communications can produce a pure singlet from any
mixed state of two spin-1/2 particles. More generally, no such scheme can
produce a maximally entangled state of any pair of finite-dimensional systems
from a generic mixed state. We also show that the Werner states belong to a
large class of states whose fidelity cannot be increased by such a scheme.Comment: 3 pages, Latex with Revtex. Small clarifications and reference adde
- …
