4,869 research outputs found

    Polarization of Thermal Emission from Aligned Dust Grains Under an Anisotropic Radiation Field

    Get PDF
    If aspherical dust grains are immersed in an anisotropic radiation field, their temperature depends on the cross-sections projected in the direction of the anisotropy.It was shown that the temperature difference produces polarized thermal emission even without alignment, if the observer looks at the grains from a direction different from the anisotropic radiation. When the dust grains are aligned, the anisotropy in the radiation makes various effects on the polarization of the thermal emission, depending on the relative angle between the anisotropy and alignment directions. If the both directions are parallel, the anisotropy produces a steep increase in the polarization degree at short wavelengths. If they are perpendicular, the polarization reversal occurs at a wavelength shorter than the emission peak. The effect of the anisotropic radiation will make a change of more than a few % in the polarization degree for short wavelengths and the effect must be taken into account in the interpretation of the polarization in the thermal emission. The anisotropy in the radiation field produces a strong spectral dependence of the polarization degree and position angle, which is not seen under isotropic radiation. The dependence changes with the grain shape to a detectable level and thus it will provide a new tool to investigate the shape of dust grains. This paper presents examples of numerical calculations of the effects and demonstrates the importance of anisotropic radiation field on the polarized thermal emission.Comment: 13pages, 7figure

    High Resolution Millimeter-Wave Mapping of Linearly Polarized Dust Emission: Magnetic Field Structure in Orion

    Get PDF
    We present 1.3 and 3.3 mm polarization maps of Orion-KL obtained with the BIMA array at approximately 4 arcsec resolution. Thermal emission from magnetically aligned dust grains produces the polarization. Along the Orion ``ridge'' the polarization position angle varies smoothly from about 10 degrees to 40 degrees, in agreement with previous lower resolution maps. In a small region south of the Orion ``hot core,'' however, the position angle changes by 90 degrees. This abrupt change in polarization direction is not necessarily the signpost of a twisted magnetic field. Rather, in this localized region processes other than the usual Davis-Greenstein mechanism might align the dust grains with their long axes parallel with the field, orthogonal to their normal orientation.Comment: AAS preprint:14 pages, 2 figures (3mm.eps and 1mm.eps); requires aaspp4.sty To be published in Astrophysical Journal Letter

    Fast computation by block permanents of cumulative distribution functions of order statistics from several populations

    Full text link
    The joint cumulative distribution function for order statistics arising from several different populations is given in terms of the distribution function of the populations. The computational cost of the formula in the case of two populations is still exponential in the worst case, but it is a dramatic improvement compared to the general formula by Bapat and Beg. In the case when only the joint distribution function of a subset of the order statistics of fixed size is needed, the complexity is polynomial, for the case of two populations.Comment: 21 pages, 3 figure

    The Neon Abundance of Galactic Wolf-Rayet Stars

    Full text link
    The fast, dense winds which characterize Wolf-Rayet (WR) stars obscure their underlying cores, and complicate the verification of evolving core and nucleosynthesis models. Core evolution can be probed by measuring abundances of wind-borne nuclear processed elements, partially overcoming this limitation. Using ground-based mid-infrared spectroscopy and the 12.81um [NeII] emission line measured in four Galactic WR stars, we estimate neon abundances and compare to long-standing predictions from evolved-core models. For the WC star WR121, this abundance is found to be >~11x the cosmic value, in good agreement with predictions. For the three less-evolved WN stars, little neon enhancement above cosmic values is measured, as expected. We discuss the impact of clumping in WR winds on this measurement, and the promise of using metal abundance ratios to eliminate sensitivity to wind density and ionization structure.Comment: Accepted for publication in ApJ; 9 pages, 2 color figures, 4 table

    The Inner Rings of Beta Pictoris

    Get PDF
    We present Keck images of the dust disk around Beta Pictoris at 17.9 microns that reveal new structure in its morphology. Within 1" (19 AU) of the star, the long axis of the dust emission is rotated by more than 10 degrees with respect to that of the overall disk. This angular offset is more pronounced than the warp detected at 3.5" by HST, and in the opposite direction. By contrast, the long axis of the emission contours at ~ 1.5" from the star is aligned with the HST warp. Emission peaks between 1.5" and 4" from the star hint at the presence of rings similar to those observed in the outer disk at ~ 25" with HST/STIS. A deconvolved image strongly suggests that the newly detected features arise from a system of four non-coplanar rings. Bayesian estimates based on the primary image lead to ring radii of 14+/-1 AU, 28+/-3 AU, 52+/-2 AU and 82+/-2 AU, with orbital inclinations that alternate in orientation relative to the overall disk and decrease in magnitude with increasing radius. We believe these new results make a strong case for the existence of a nascent planetary system around Beta Pic.Comment: 5 pages, 2 figures, PDF format. Published in ApJL, December 20,200

    Hubble Space Telescope NICMOS Polarization Measurements of OMC-1

    Full text link
    We present 2micron polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2'' resolution) on HST. Our results are as follows: BN is sim 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to sim 5'' to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7'' east of BN, and a deeply-embedded variable star. Additional strongly polarized sources are IRc2-B, IRc2-D, and IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. The most polarized star has a polarization position angle different from its neighbors by sim 40^o, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1.Comment: 41 pages, 8 figures, 4 tables, to appear in The Astrophysical Journa

    Don’t Worry, We’ll Get There: Developing Robot Personalities to Maintain User Interaction After Robot Error

    Get PDF
    Human robot interaction (HRI) often considers the human impact of a robot serving to assist a human in achieving their goal or a shared task. There are many circumstances though during HRI in which a robot may make errors that are inconvenient or even detrimental to human partners. Using the ROBOtic GUidance and Interaction DEvelopment (ROBO-GUIDE) model on the Pioneer LX platform as a case study, and insights from social psychology, we examine key factors for a robot that has made such a mistake, ensuring preservation of individuals’ perceived competence of the robot, and individuals’ trust towards the robot. We outline an experimental approach to test these proposals

    Identities for hyperelliptic P-functions of genus one, two and three in covariant form

    Full text link
    We give a covariant treatment of the quadratic differential identities satisfied by the P-functions on the Jacobian of smooth hyperelliptic curves of genera 1, 2 and 3

    Entropy, non-ergodicity and non-Gaussian behaviour in ballistic transport

    Full text link
    Ballistic transportation introduces new challenges in the thermodynamic properties of a gas of particles. For example, violation of mixing, ergodicity and of the fluctuation-dissipation theorem may occur, since all these processes are connected. In this work, we obtain results for all ranges of diffusion, i.e., both for subdiffusion and superdiffusion, where the bath is such that it gives origin to a colored noise. In this way we obtain the skewness and the non-Gaussian factor for the probability distribution function of the dynamical variable. We put particular emphasis on ballistic diffusion, and we demonstrate that in this case, although the second law of thermodynamics is preserved, the entropy does not reach a maximum and a non-Gaussian behavior occurs. This implies the non-applicability of the central limit theorem.Comment: 9 pages, 2 figure
    • 

    corecore