4,869 research outputs found
Polarization of Thermal Emission from Aligned Dust Grains Under an Anisotropic Radiation Field
If aspherical dust grains are immersed in an anisotropic radiation field,
their temperature depends on the cross-sections projected in the direction of
the anisotropy.It was shown that the temperature difference produces polarized
thermal emission even without alignment, if the observer looks at the grains
from a direction different from the anisotropic radiation. When the dust grains
are aligned, the anisotropy in the radiation makes various effects on the
polarization of the thermal emission, depending on the relative angle between
the anisotropy and alignment directions. If the both directions are parallel,
the anisotropy produces a steep increase in the polarization degree at short
wavelengths. If they are perpendicular, the polarization reversal occurs at a
wavelength shorter than the emission peak. The effect of the anisotropic
radiation will make a change of more than a few % in the polarization degree
for short wavelengths and the effect must be taken into account in the
interpretation of the polarization in the thermal emission. The anisotropy in
the radiation field produces a strong spectral dependence of the polarization
degree and position angle, which is not seen under isotropic radiation. The
dependence changes with the grain shape to a detectable level and thus it will
provide a new tool to investigate the shape of dust grains. This paper presents
examples of numerical calculations of the effects and demonstrates the
importance of anisotropic radiation field on the polarized thermal emission.Comment: 13pages, 7figure
High Resolution Millimeter-Wave Mapping of Linearly Polarized Dust Emission: Magnetic Field Structure in Orion
We present 1.3 and 3.3 mm polarization maps of Orion-KL obtained with the
BIMA array at approximately 4 arcsec resolution. Thermal emission from
magnetically aligned dust grains produces the polarization. Along the Orion
``ridge'' the polarization position angle varies smoothly from about 10 degrees
to 40 degrees, in agreement with previous lower resolution maps. In a small
region south of the Orion ``hot core,'' however, the position angle changes by
90 degrees. This abrupt change in polarization direction is not necessarily the
signpost of a twisted magnetic field. Rather, in this localized region
processes other than the usual Davis-Greenstein mechanism might align the dust
grains with their long axes parallel with the field, orthogonal to their normal
orientation.Comment: AAS preprint:14 pages, 2 figures (3mm.eps and 1mm.eps); requires
aaspp4.sty To be published in Astrophysical Journal Letter
Fast computation by block permanents of cumulative distribution functions of order statistics from several populations
The joint cumulative distribution function for order statistics arising from
several different populations is given in terms of the distribution function of
the populations. The computational cost of the formula in the case of two
populations is still exponential in the worst case, but it is a dramatic
improvement compared to the general formula by Bapat and Beg. In the case when
only the joint distribution function of a subset of the order statistics of
fixed size is needed, the complexity is polynomial, for the case of two
populations.Comment: 21 pages, 3 figure
The Neon Abundance of Galactic Wolf-Rayet Stars
The fast, dense winds which characterize Wolf-Rayet (WR) stars obscure
their underlying cores, and complicate the verification of evolving
core and nucleosynthesis models. Core evolution can be probed by
measuring abundances of wind-borne nuclear processed elements,
partially overcoming this limitation. Using ground-based mid-infrared
spectroscopy and the 12.81um [NeII] emission line measured in
four Galactic WR stars, we estimate neon abundances and compare to
long-standing predictions from evolved-core models. For the WC star
WR121, this abundance is found to be >~11x the cosmic
value, in good agreement with predictions. For the three less-evolved
WN stars, little neon enhancement above cosmic values is measured, as
expected. We discuss the impact of clumping in WR winds on this
measurement, and the promise of using metal abundance ratios to
eliminate sensitivity to wind density and ionization structure.Comment: Accepted for publication in ApJ; 9 pages, 2 color figures, 4 table
The Inner Rings of Beta Pictoris
We present Keck images of the dust disk around Beta Pictoris at 17.9 microns
that reveal new structure in its morphology. Within 1" (19 AU) of the star, the
long axis of the dust emission is rotated by more than 10 degrees with respect
to that of the overall disk. This angular offset is more pronounced than the
warp detected at 3.5" by HST, and in the opposite direction. By contrast, the
long axis of the emission contours at ~ 1.5" from the star is aligned with the
HST warp. Emission peaks between 1.5" and 4" from the star hint at the presence
of rings similar to those observed in the outer disk at ~ 25" with HST/STIS. A
deconvolved image strongly suggests that the newly detected features arise from
a system of four non-coplanar rings. Bayesian estimates based on the primary
image lead to ring radii of 14+/-1 AU, 28+/-3 AU, 52+/-2 AU and 82+/-2 AU, with
orbital inclinations that alternate in orientation relative to the overall disk
and decrease in magnitude with increasing radius. We believe these new results
make a strong case for the existence of a nascent planetary system around Beta
Pic.Comment: 5 pages, 2 figures, PDF format. Published in ApJL, December 20,200
Hubble Space Telescope NICMOS Polarization Measurements of OMC-1
We present 2micron polarization measurements of positions in the BN region of
the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2'' resolution)
on HST. Our results are as follows: BN is sim 29% polarized by dichroic
absorption and appears to be the illuminating source for most of the nebulosity
to its north and up to sim 5'' to its south. Although the stars are probably
all polarized by dichroic absorption, there are a number of compact, but
non-point-source, objects that could be polarized by a combination of both
dichroic absorption and local scattering of star light. We identify several
candidate YSOs, including an approximately edge-on bipolar YSO 8.7'' east of
BN, and a deeply-embedded variable star. Additional strongly polarized sources
are IRc2-B, IRc2-D, and IRc7, all of which are obviously self-luminous at
mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula
illuminated by a star located near radio source I, as was previously suggested.
Other IRc sources are clearly reflection nebulae: IRc3 appears to be
illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5
appear to be illuminated by an unseen star in the vicinity of radio source I,
or by Star n or IRc2-A. Trends in the magnetic field direction are inferred
from the polarization of the 26 stars that are bright enough to be seen as
NICMOS point sources. The most polarized star has a polarization position angle
different from its neighbors by sim 40^o, but in agreement with the grain
alignment inferred from millimeter polarization measurements of the cold dust
cloud in the southern part of OMC-1.Comment: 41 pages, 8 figures, 4 tables, to appear in The Astrophysical Journa
Donât Worry, Weâll Get There: Developing Robot Personalities to Maintain User Interaction After Robot Error
Human robot interaction (HRI) often considers the human impact of a robot serving to assist a human in achieving their goal or a shared task. There are many circumstances though during HRI in which a robot may make errors that are inconvenient or even detrimental to human partners. Using the ROBOtic GUidance and Interaction DEvelopment (ROBO-GUIDE) model on the Pioneer LX platform as a case study, and insights from social psychology, we examine key factors for a robot that has made such a mistake, ensuring preservation of individualsâ perceived competence of the robot, and individualsâ trust towards the robot. We outline an experimental approach to test these proposals
Identities for hyperelliptic P-functions of genus one, two and three in covariant form
We give a covariant treatment of the quadratic differential identities
satisfied by the P-functions on the Jacobian of smooth hyperelliptic curves of
genera 1, 2 and 3
Entropy, non-ergodicity and non-Gaussian behaviour in ballistic transport
Ballistic transportation introduces new challenges in the thermodynamic
properties of a gas of particles. For example, violation of mixing, ergodicity
and of the fluctuation-dissipation theorem may occur, since all these processes
are connected. In this work, we obtain results for all ranges of diffusion,
i.e., both for subdiffusion and superdiffusion, where the bath is such that it
gives origin to a colored noise. In this way we obtain the skewness and the
non-Gaussian factor for the probability distribution function of the dynamical
variable. We put particular emphasis on ballistic diffusion, and we demonstrate
that in this case, although the second law of thermodynamics is preserved, the
entropy does not reach a maximum and a non-Gaussian behavior occurs. This
implies the non-applicability of the central limit theorem.Comment: 9 pages, 2 figure
- âŠ