287 research outputs found

    Shell Model Monte Carlo method in the pnpn-formalism and applications to the Zr and Mo isotopes

    Full text link
    We report on the development of a new shell-model Monte Carlo algorithm which uses the proton-neutron formalism. Shell model Monte Carlo methods, within the isospin formulation, have been successfully used in large-scale shell-model calculations. Motivation for this work is to extend the feasibility of these methods to shell-model studies involving non-identical proton and neutron valence spaces. We show the viability of the new approach with some test results. Finally, we use a realistic nucleon-nucleon interaction in the model space described by (1p_1/2,0g_9/2) proton and (1d_5/2,2s_1/2,1d_3/2,0g_7/2,0h_11/2) neutron orbitals above the Sr-88 core to calculate ground-state energies, binding energies, B(E2) strengths, and to study pairing properties of the even-even 90-104 Zr and 92-106 Mo isotope chains

    Shell-Model Monte Carlo Simulations of BCS-BEC Crossover in Few-Fermion Systems

    Full text link
    We study a trapped system of fermions with a zero-range two-body interaction using the shell-model Monte Carlo method, providing {\em ab initio} results for the low particle number limit where mean-field theory is not applicable. We present results for the NN-body energies as function of interaction strength, particle number, and temperature. The subtle question of renormalization in a finite model space is addressed and the convergence of our method and its applicability across the BCS-BEC crossover is discussed. Our findings indicate that very good quantitative results can be obtained on the BCS side, whereas at unitarity and in the BEC regime the convergence is less clear. Comparison to N=2 analytics at zero and finite temperature, and to other calculations in the literature for N>2N>2 show very good agreement.Comment: 6 pages, 5 figures, Revtex4, final versio

    Parity-Projected Shell Model Monte Carlo Level Densities for fp-shell Nuclei

    Get PDF
    We calculate parity-dependent level densities for the even-even isotopes 58,62,66 Fe and 58 Ni and the odd-A nuclei 59 Ni and 65 Fe using the Shell Model Monte Carlo method. We perform these calculations in the complete fp-gds shell-model space using a pairing+quadrupole residual interaction. We find that, due to pairing of identical nucleons, the low-energy spectrum is dominated by positive parity states. Although these pairs break at around the same excitation energy in all nuclei, the energy dependence of the ratio of negative-to-positive parity level densities depends strongly on the particular nucleus of interest. We find equilibration of both parities at noticeably lower excitation energies for the odd-A nuclei 59 Ni and 65 Fe than for the neighboring even-even nuclei 58 Ni and 66 Fe.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal (2019), doi:10.1038/s41396-019-0373-4.The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of “microbial dark matter”, validating hypotheses put forth by earlier metagenomic studies.This work was supported by a grant OR 417/1-1 from the Deutsche Forschungsgemeinschaft, and a Junior Researcher Fund grant from LMU Munich to WDO. This work was performed in part, through the Master’s Program in Geobiology and Paleontology (MGAP) at LMU Munich

    Correlation between live weight and body measurements in certain dog breeds

    Get PDF
    The purpose of this study was to determine the correlation between live weight and body measurements in Zagar, Zerdava, and Catalburun dogs. Animal materials were obtained from various regions of Turkey. A total of 304 dogs from three breeds were used: Zagar (45 females, 59 males), Zerdava (50 females, 50 males), and Catalburun (62 females, 38 males). Live weights and certain body measurements were determined. A linear regression model was created using the parameters obtained in this study. The bodyweights calculated with the body measurements were found to be at a high or acceptable level in the Zagar, Zerdava, and Catalburun genotypes (R-2 = 0.902, 0.467, and 0.697, respectively).Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)The authors would like to thank Scientific and Technological Research Council of Turkey (TUBITAK) and the owners of the Zagar, Zerdava and Catalburun dogs for their support to the project

    Energy optimisation models for self-sufficiency of a typical turkish residential electricity customer of the future

    Get PDF
    This paper utilises a two-stage demand response-enabled energy management algorithm for a typical Turkish self-sufficient living space. The proposed energy management model provides an additional gain in line with the goal of self-sufficiency by scheduling flexible loads and energy storage systems at home according to a static time of use tariff. The impact of load scheduling and battery optimisation were evaluated in the scope of self-sufficiency, economic gain and return on investment performances. According to the results, the proposed two-stage structure provided a net saving increase of 9.5% in the one-battery scenario, and it rises to 14% in the design with three batteries. On the other hand, when we inspect the energy management scenarios with the return on investment (ROI) calculations, we see that the single battery system has a higher ROI than the two or three battery systems due to the increased battery cost. Moreover, the ROI value, 13.9% without optimisation, increased to 15.3% in the proposed Home Energy Management System (HEMS) model. As can be seen from this calculation, intelligent management of batteries and flexible loads provided a 10% increase in ROI value.</jats:p

    Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    Get PDF
    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method by estimating the pairing correlations in a small two-component Fermi system with moderate-to-strong short-range two-body interactions in a three-dimensional harmonic external trapping potential.Comment: 13 pages, 3 figures. Final versio

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
    corecore