296 research outputs found

    Termination of Triangular Integer Loops is Decidable

    Get PDF
    We consider the problem whether termination of affine integer loops is decidable. Since Tiwari conjectured decidability in 2004, only special cases have been solved. We complement this work by proving decidability for the case that the update matrix is triangular.Comment: Full version (with proofs) of a paper published in the Proceedings of the 31st International Conference on Computer Aided Verification (CAV '19), New York, NY, USA, Lecture Notes in Computer Science, Springer-Verlag, 201

    Implant Compression Necrosis: Current Understanding and Case Report

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141362/1/jper0700.pd

    The Origin of Solar Activity in the Tachocline

    Full text link
    Solar active regions, produced by the emergence of tubes of strong magnetic field in the photosphere, are restricted to within 35 degrees of the solar equator. The nature of the dynamo processes that create and renew these fields, and are therefore responsible for solar magnetic phenomena, are not well understood. We analyze the magneto-rotational stability of the solar tachocline for general field geometry. This thin region of strong radial and latitudinal differential rotation, between the radiative and convective zones, is unstable at latitudes above 37 degrees, yet is stable closer to the equator. We propose that small-scale magneto-rotational turbulence prevents coherent magnetic dynamo action in the tachocline except in the vicinity of the equator, thus explaining the latitudinal restriction of active regions. Tying the magnetic dynamo to the tachocline elucidates the physical conditions and processes relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ

    Changes in heart rate variability and QT variability during the first trimester of pregnancy

    Get PDF
    The risk of new-onset arrhythmia during pregnancy is high, presumably relating to changes in both haemodynamic and cardiac autonomic function. The ability to non-invasively assess an individual's risk of developing arrhythmia during pregnancy would therefore be clinically significant. We aimed to quantify electrocardiographic temporal characteristics during the first trimester of pregnancy and to compare these with non-pregnant controls.Ninety-nine pregnant women and sixty-three non-pregnant women underwent non-invasive cardiovascular and haemodynamic assessment during a protocol consisting of various physiological states (postural manoeurvres, light exercise and metronomic breathing). Variables measured included stroke volume, cardiac output, heart rate, heart rate variability, QT and QT variability and QTVI (a measure of the variability of QT relative to that of RR).Heart rate (p < 0.0005, p < 0.0005, p < 0.0005) and cardiac output (p = 0.043, p < 0.0005, p < 0.0005) were greater in pregnant women in all physiological states (respectively for the supine position, light exercise and metronomic breathing state), whilst stroke volume was lower in pregnancy only during the supine position (p < 0.0005). QTe (Q wave onset to T wave end) and QTa (T wave apex) were significantly shortened (p < 0.05) and QTeVI and QTaVI were increased in pregnancy in all physiological states (p < 0.0005). QT variability (p < 0.002) was greater in pregnant women during the supine position, whilst heart rate variability was reduced in pregnancy in all states (p < 0.0005).Early pregnancy is associated with substantial changes in heart rate variability, reflecting a reduction in parasympathetic tone and an increase in sympathetic activity. QTVI shifted to a less favourable value, reflecting a greater than normal amount of QT variability. QTVI appears to be a useful method for quantifying changes in QT variability relative to RR (or heart rate) variability, being sensitive not only to physiological state but also to gestational age. We support the use of non-invasive markers of cardiac electrical variability to evaluate the risk of arrhythmic events in pregnancy, and we recommend the use of multiple physiological states during the assessment protocol

    CDH11 inhibits proliferation and invasion in head and neck cancer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135974/1/jop12471_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135974/2/jop12471.pd

    Outstanding Issues in Solar Dynamo Theory

    Full text link
    The magnetic activity of the Sun, as manifested in the sunspot cycle, originates deep within its convection zone through a dynamo mechanism which involves non-trivial interactions between the plasma and magnetic field in the solar interior. Recent advances in magnetohydrodynamic dynamo theory have led us closer towards a better understanding of the physics of the solar magnetic cycle. In conjunction, helioseismic observations of large-scale flows in the solar interior has now made it possible to constrain some of the parameters used in models of the solar cycle. In the first part of this review, I briefly describe this current state of understanding of the solar cycle. In the second part, I highlight some of the outstanding issues in solar dynamo theory related to the the nature of the dynamo α\alpha-effect, magnetic buoyancy and the origin of Maunder-like minima in activity. I also discuss how poor constraints on key physical processes such as turbulent diffusion, meridional circulation and turbulent flux pumping confuse the relative roles of these vis-a-vis magnetic flux transport. I argue that unless some of these issues are addressed, no model of the solar cycle can claim to be ``the standard model'', nor can any predictions from such models be trusted; in other words, we are still not there yet.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Automated Reasoning and Presentation Support for Formalizing Mathematics in Mizar

    Full text link
    This paper presents a combination of several automated reasoning and proof presentation tools with the Mizar system for formalization of mathematics. The combination forms an online service called MizAR, similar to the SystemOnTPTP service for first-order automated reasoning. The main differences to SystemOnTPTP are the use of the Mizar language that is oriented towards human mathematicians (rather than the pure first-order logic used in SystemOnTPTP), and setting the service in the context of the large Mizar Mathematical Library of previous theorems,definitions, and proofs (rather than the isolated problems that are solved in SystemOnTPTP). These differences poses new challenges and new opportunities for automated reasoning and for proof presentation tools. This paper describes the overall structure of MizAR, and presents the automated reasoning systems and proof presentation tools that are combined to make MizAR a useful mathematical service.Comment: To appear in 10th International Conference on. Artificial Intelligence and Symbolic Computation AISC 201

    Interpolation Properties and SAT-based Model Checking

    Full text link
    Craig interpolation is a widespread method in verification, with important applications such as Predicate Abstraction, CounterExample Guided Abstraction Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model checking techniques based on interpolation require collections of interpolants to satisfy particular properties, to which we refer as "collectives"; they do not hold in general for all interpolation systems and have to be established for each particular system and verification environment. Nevertheless, no systematic approach exists that correlates the individual interpolation systems and compares the necessary collectives. This paper proposes a uniform framework, which encompasses (and generalizes) the most common collectives exploited in verification. We use it for a systematic study of the collectives and of the constraints they pose on propositional interpolation systems used in SAT-based model checking

    SEINE: Methods for Electronic Data Capture and Integrated Data Repository Synthesis with Patient Registry Use Cases

    Get PDF
    Integrated Data Repositories (IDR) allow clinical research to leverage electronic health records (EHR) and other data sources while Electronic Data Capture (EDC) applications often support manually maintained patient registries. Using i2b2 and REDCap, (IDR and EDC platforms respectively) we have developed methods that integrate IDR and EDC strengths supporting: 1) data delivery from the IDR as ready-to-use registries to exploit the annotation and data collection capabilities unique to EDC applications; 2) integrating EDC managed registries into data repositories allows investigators to use hypothesis generation and cohort discovery methods. This round-trip integration can lower lag between cohort discovery and establishing a registry. Investigators can also periodically augment their registry cohort as the IDR is enriched with additional data elements, data sources, and patients. We describe our open-source automated methods and provide three example registry uses cases for these methods: triple negative breast cancer, vertiginous syndrome, cancer distress
    • 

    corecore