1,201 research outputs found

    Symmetryless Dark Matter

    Full text link
    It is appealing to stabilize dark matter by the same discrete symmetry that is used to explain the structure of quark and lepton mass matrices. However, to generate the observed fermion mixing patterns, any flavor symmetry must necessarily be broken, rendering dark matter unstable. We study singlet, doublet and triplet SU(2) multiplets of both scalar and fermion dark matter candidates and enumerate the conditions under which no d < 6 dark matter decay operators are generated even in the case if the flavor symmetry is broken to nothing. We show that the VEVs of flavon scalars transforming as higher multiplets (e.g. triplets) of the flavor group must be at the electroweak scale. The most economical way for that is to use SM Higgs boson(s) as flavons. Such models can be tested by the LHC experiments. This scenario requires the existence of additional Froggatt-Nielsen scalars that generate hierarchies in Yukawa couplings. We study the conditions under which large and small flavor breaking parameters can coexist without destabilizing the dark matter.Comment: 8 pages, no figure

    Gauge invariant definition of the jet quenching parameter

    Full text link
    In the framework of Soft-Collinear Effective Theory, the jet quenching parameter, q^\hat{q}, has been evaluated by adding the effect of Glauber gluon interactions to the propagation of a highly-energetic collinear parton in a medium. The result, which holds in covariant gauges, has been expressed in terms of the expectation value of two Wilson lines stretching along the direction of the four-momentum of the parton. In this paper, we show how that expression can be generalized to an arbitrary gauge by the addition of transverse Wilson lines. The transverse Wilson lines are explicitly computed by resumming interactions of the parton with Glauber gluons that appear only in non-covariant gauges. As an application of our result, we discuss the contribution to q^\hat{q} coming from transverse momenta of order g2Tg^2T in a medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio

    A non-perturbative contribution to jet quenching

    Get PDF
    It has been argued by Caron-Huot that infrared contributions to the jet quenching parameter in hot QCD, denoted by qhat, can be extracted from an analysis of a certain static-potential related observable within the dimensionally reduced effective field theory. Following this philosophy, the order of magnitude of a non-perturbative contribution to qhat from the colour-magnetic scale, g^2T/pi, is estimated. The result is small; it is probably below the parametrically perturbative but in practice slowly convergent contributions from the colour-electric scale, whose all-orders resummation therefore remains an important challenge.Comment: 4 pages. v2: clarifications, published versio

    Virtual signatures of dark sectors in Higgs couplings

    Full text link
    Where collider searches for resonant invisible particles loose steam, dark sectors might leave their trace as virtual effects in precision observables. Here we explore this option in the framework of Higgs portal models, where a sector of dark fermions interacts with the standard model through a strong renormalizable coupling to the Higgs boson. We show that precise measurements of Higgs-gauge and triple Higgs interactions can probe dark fermions up to the TeV scale through virtual corrections. Observation prospects at the LHC and future lepton colliders are discussed for the so-called singlet-doublet model of Majorana fermions, a generalization of the bino-higgsino scenario in supersymmetry. We advocate a two-fold search strategy for dark sectors through direct and indirect observables.Comment: 20 pages, 7 figures, 1 tabl

    Time lag between metamorphism and crystallization of anatectic granites (CĂ³rdoba, Argentina)

    Get PDF
    SHRIMP and LA-ICP-MS analyses carried out on zircons from the RĂ­o de los Sauces granite revealed their metamorphic and igneous nature. The metamorphic zircons yielded an age of 537±4.8 (2σ)Ma that probably predates the onset of the anatexis during the Pampean orogeny. By contrast, the igneous zircons yielded a younger age of 529±6 (2σ)Ma and reflected its crystallization age. These data point to a short time lag of ca. 8Myr between the High Temperature (HT) metamorphic peak and the subsequent crystallization age of the granite. Concordia age of 534±3.8 (2σ)Ma, for both types of zircon populations, can be considered as the mean age of the Pampean HT metamorphism in the Sierras de CĂ³rdoba.Facultad de Ciencias Naturales y Muse

    Jet quenching in a strongly coupled anisotropic plasma

    Full text link
    The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled N=4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.Comment: 22 pages, 10 figures; v2: minor changes, added reference. Extends arXiv:1202.369

    A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory

    Get PDF
    Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the rele- vant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a "rapidity renormalization group". That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any scenario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form factor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are uni- versal. We present details of the factorization and resummation of the jet broadening cross section including a renormalization in pT space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.Comment: Typos in Appendix C corrected, as well as a typo in eq. 5.6

    Dark Matter from Minimal Flavor Violation

    Full text link
    We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splittings among the flavors of dark matter and governs the structure of the couplings between dark matter and ordinary particles, leading to a rich and predictive cosmology and phenomenology. We present an illustrative phenomenological study of an effective theory of a flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider analysis, conclusions unchange

    Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking

    Get PDF
    We propose the hybrid gravity-gauge mediated supersymmetry breaking where the gravitino mass is about several GeV. The strong constraints on supersymmetry viable parameter space from the CMS and ATLAS experiments at the LHC can be relaxed due to the heavy colored supersymmetric particles, and it is consistent with null results in the dark matter (DM) direct search experiments such as XENON100. In particular, the possible maximal flavor and CP violations from the relatively small gravity mediation may naturally account for the recent LHCb anomaly. In addition, because the gravitino mass is around the asymmetric DM mass, we propose the asymmetric origin of the gravitino relic density and solve the cosmological coincident problem on the DM and baryon densities \Omega_{\rm DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric metastable particle (AMP) late decay. However, we show that there is no AMP candidate in the minimal supersymmetric Standard Model (SM) due to the robust gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized in the well motivated supersymmetric SMs with vector-like particles or continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
    • …
    corecore