59 research outputs found

    Air Pollution and Lymphocyte Phenotype Proportions in Cord Blood

    Get PDF
    Effects of air pollution on morbidity and mortality may be mediated by alterations in immune competence. In this study we examined short-term associations of air pollution exposures with lymphocyte immunophenotypes in cord blood among 1,397 deliveries in two districts of the Czech Republic. We measured fine particulate matter < 2.5 μm in diameter (PM(2.5)) and 12 polycyclic aromatic hydrocarbons (PAHs) in 24-hr samples collected by versatile air pollution samplers. Cord blood samples were analyzed using a FACSort flow cytometer to determine phenotypes of CD3(+) T-lymphocytes and their subsets CD4(+) and CD8(+), CD19(+) B-lymphocytes, and natural killer cells. The mothers were interviewed regarding sociodemographic and lifestyle factors, and medical records were abstracted for obstetric, labor and delivery characteristics. During the period 1994 to 1998, the mean daily ambient concentration of PM(2.5) was 24.8 μg/m(3) and that of PAHs was 63.5 ng/m(3). In multiple linear regression models adjusted for temperature, season, and other covariates, average PAH or PM(2.5) levels during the 14 days before birth were associated with decreases in T-lymphocyte phenotype fractions (i.e., CD3(+) CD4(+), and CD8(+)), and a clear increase in the B-lymphocyte (CD19(+)) fraction. For a 100-ng/m(3) increase in PAHs, which represented approximately two standard deviations, the percentage decrease was −3.3% [95% confidence interval (CI), −5.6 to −1.0%] for CD3(+), −3.1% (95% CI, −4.9 to −1.3%) for CD4(+), and −1.0% (95% CI, −1.8 to −0.2%) for CD8(+) cells. The corresponding increase in the CD19(+) cell proportion was 1.7% (95% CI, 0.4 to 3.0%). Associations were similar but slightly weaker for PM(2.5). Ambient air pollution may influence the relative distribution of lymphocyte immunophenotypes of the fetus

    Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander?

    Get PDF
    Abstract: Regulatory T (Treg) cells are now under extensive investigation in chronic lymphocytic leukemia (CLL). This small subset of T-cells has been, in fact, considered to be involved in the pathogenesis and progression of CLL. However, whether Treg dysregulation in CLL plays a key role or it rather represents a simple epiphenomenon is still matter of debate. In the former case, Treg cells could be appealing for targeting therapies. Finally, Treg cells have also been proposed as a prognostic indicator of the disease clinical course

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    Regulatory T-Cells in Chronic Lymphocytic Leukemia and Autoimmune Diseases

    No full text
    Abstract Regulatory T-cells (Tregs) constitute a small subset of cells that are actively involved in maintaining self-tolerance, in immune homeostasis and in antitumor immunity. They are thought to play a significant role in the progression of cancer and are generally increased in patient with chronic lymphocytic leukemia (CLL). Their number correlates with more aggressive disease status and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in Tregs cell frequency and/or function may result in a plethora of autoimmune diseases, including multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosus, autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are made aiming to develop approaches to deplete Tregs or inhibit their function in cancer and autoimmune disorders, as well
    corecore