41 research outputs found

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic

    Bandwidth Constrained Multi-interface Networks

    Get PDF
    International audienceIn heterogeneous networks, devices can communicate by means of multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost, and provides a communication bandwidth. In this paper, we consider the problem of activating the cheapest set of interfaces among a network G = (V,E) in order to guarantee a minimum bandwidth B of communication between two specified nodes. Nodes V represent the devices, edges E represent the connections that can be established. In practical cases, a bounded number k of different interfaces among all the devices can be considered. Despite this assumption, the problem turns out to be NP-hard even for small values of k and Δ, where Δ is the maximum degree of the network. In particular, the problem is NP-hard for any fixed k ≥ 2 and Δ ≥ 3, while it is polynomially solvable when k = 1, or Δ ≤ 2 and k = O(1). Moreover, we show that the problem is not approximable within ηlogB or Ω(loglog|V|) for any fixed k ≥ 3, Δ ≥ 3, and for a certain constant η, unless P=NP. We then provide an approximation algorithm with ratio guarantee of b max , where b max is the maximum communication bandwidth allowed among all the available interfaces. Finally, we focus on particular cases by providing complexity results and polynomial algorithms for Δ ≤ 2

    Min-Max Coverage in Multi-interface Networks

    Get PDF
    International audienceWe consider devices equipped with multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost. In this paper, we consider the problem of establishing the connections defined by a network G = (V,E) while keeping as low as possible the maximum cost set of active interfaces at the single nodes. Nodes V represent the devices, edges E represent the connections that must be established. We study the problem of minimizing the maximum cost set of active interfaces among the nodes of the network in order to cover all the edges. We prove that the problem is NP-hard for any fixed Δ ≥ 5 and k ≥ 16, with Δ being the maximum degree, and k being the number of different interfaces among the network. We also show that the problem cannot be approximated within Ω(ln Δ). We then provide a general approximation algorithm which guarantees a factor of O((1 + b)ln (Δ)), with b being a parameter depending on the topology of the input graph. Interestingly, b can be bounded by a constant for many graph classes. Other approximation and exact algorithms for special cases are presented

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure
    corecore