32 research outputs found

    Long‐Term Monitoring of Coupled Vegetation and Elevation Changes in Response to Sea Level Rise in a Microtidal Salt Marsh

    Get PDF
    Tight interplays between physical and biotic processes in tidal salt marshes lead to self-organization of halophytic vegetation into recurrent zonation patterns developed across elevation gradients. Despite its importance for marsh ecomorphodynamics, however, the response of vegetation zonation to changing environmental forcings remains difficult to predict, mostly because of lacking long-term field observations of vegetation evolution in the face of changing rates of sea level rise and marsh vertical accretion. Here we present novel data of coupled marsh elevation-vegetation distribution collected in the microtidal Venice Lagoon (Italy) over nearly two decades. Our results suggest that: (a) despite increasing absolute marsh elevations (i.e., above a fixed datum), vertical accretion rates across most of the studied marsh were not high enough to compensate for relative sea-level rise (RSLR), thus leading to a progressive marsh drowning; (b) accretion rates ranging 1.7–4.3 mm/year are overall lower than the measured RSLR rate (4.4 mm/year) and strongly site-specific. Accretion rates vary largely at sites within distances of a few tens of meters, being controlled by local elevation and sediment availability from eroding marsh edges; (c) vegetation responds species-specifically to changes in environmental forcings by modifying species-preferential elevation ranges. For the first time, we observe the consistency of a sequential vegetation-species zonation with increasing marsh elevations over 20 years. We suggest this is the signature of vegetation resilience to changes in external forcings. Our results highlight a strong coupling between geomorphological and ecological dynamics and call for spatially distributed marsh monitoring and spatially explicit biomorphodynamic models of marsh evolution

    Natural and Human-Induced Flow and Sediment Transport within Tidal Creek Networks Influenced by Ocean-Bay Tides

    Get PDF
    The authors would thank to the staff of the Environmental Fluid Dynamics research group (GDFA, University of Granada) for their support during the field campaign.Improving current understanding of hydrodynamics and sediment dynamics in complex tidal embayments is of major importance to face future challenges derived from climate change and increasing human pressure. This work deepens the knowledge of the hydro-morphodynamics of complex creek networks that connect basins with different characteristics, identifying their morphodynamic trends and the potential impacts of channel deepening. We selected two tidal creeks which flow through salt marshes and tidal flats of the Cádiz Bay (SW Spain) in a singular network due to their double connection to the Atlantic Ocean and the inner bay. We study the interactions between tidal waves that penetrate into the creeks from these two different bodies of water, analyzing the tidal asymmetry and the morphodynamic tendencies of the system. For the analysis, we set up a hydro-morphodynamic model specifically developed for areas with very shallow and complex channels. Results show that the tidal wave penetrates within the tidal network both from the inner Bay and the open ocean with different amplitudes, phases and flow velocities. There is also an asymmetric pattern for the tidal flows caused by the deformation of the dominant astronomical tidal constituents, M2 and M4, due to the non-linear interaction of tidal currents with the irregular creek geometry and bottom topography. Tidal asymmetry promotes the progressive infilling of the area where the tidal waves meet closing the connection between the open ocean and the inner bay, such an infilling trend being accelerated by human interventions.This work was funded by the Cádiz Bay Port Authority, the Department of Innovation, Science and Business of the Andalusian Regional Government (Project P09-TEP-4630), the Spanish Ministry of Economy and Competitiveness through the Projects CTM2009-10520-MAR, CTM2017-89531-R (PIRATES), BIA2015-65598-P (VIVALDI) and PCIN-2017-108, and by the “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo”, CYTED (project PROTOCOL 917PTE0538). The work of the first author was partially funded by the Andalusian Regional Government, Research Grant RNM-6352

    Expected Shifts in Nekton Community Following Salinity Reduction: Insights into Restoration and Management of Transitional Water Habitats

    Get PDF
    Abstract: A restoration project is planned to take place in the northern Venice lagoon (northern Adriatic Sea, Italy), aiming at introducing freshwater into a confined shallow water lagoon area and recreating transitional water habitats. This work describes the shifts in the nekton (fish and decapods) community structure to be expected following the future salinity decrease in the restoration area. Nekton was sampled at a series of natural shallow water sites located along salinity gradients in the Venice lagoon. A multivariate GLM approach was followed in order to predict species biomass under the salinity and environmental conditions expected after restoration. Biomass of commercially important species, as well as species of conservation interest, is predicted to increase following salinity reduction and habitat changes. From a functional perspective, an increase in biomass of hyperbenthivores-zooplanctivores, hyperbenthivores-piscivores and detritivores is also expected. This study emphasises the ecacy of a predictive approach for both ecological restoration and ecosystem management in transitional waters. By providing scenarios of community structure, the outcomes of this work could be employed in future evaluations of restoration success in the Venice lagoon, as well as to develop management tools to forecast the eects of alterations of salinity regimes in coastal lagoons due to climate change

    The valuation of ecosystem services in the Venice Lagoon: A multicriteria approach

    No full text
    none2Coastal ecosystems are among the most economically valuable and highly threatened on Earth; they provide valuable ecosystem services (ESs) but are severely exposed to climate changes and human pressure. Although the preservation of coastal ecosystems is of the utmost importance, it is often sub-optimally pursued by Governments and Societies because of the high costs involved. We consider salt-marsh ecosystems in the Venice Lagoon as an example of a threatened landscape, calling for innovative, integrated management strategies, and propose an application-driven methodological framework to support policymakers in the identification of cost-effective incentive policies to ecosystem preservation. By combining group decision-making and Value-Focused-Thinking approaches, we provide a multiple-criteria decision model, based on pairwise comparisons, to identify which ESs are top-priority policy targets according to a cost-effective perspective. We implemented an online Delphi survey process and interviewed a pool of experts who identified “recreation and tourism”, “coastal protection from flooding”, “carbon storage”, “biodiversity and landscape”, and “nursery habitats for fisheries” as the five most relevant ESs for the Venice Lagoon taking into consideration the Environmental, Economic, and Social perspectives. Our results suggest that the Environmental perspective is the most important criteria, whereas “biodiversity and landscape” is acknowledged as the most important ESnoneD'Alpaos C., D'Alpaos A.D'Alpaos, C.; D'Alpaos, A

    Vegetation engineers marsh morphology through multiple competing stable states

    No full text
    none3Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological– biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes.noneM. Marani;C. Da Lio; A. D'AlpaosMarani, Marco; DA LIO, Cristina; D'Alpaos, Andre

    Vegetation engineers marsh morphology through multiple competing stable states

    No full text

    Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon

    No full text
    Salt marshes are important coastal habitats and provide ecosystem services to surrounding communities. They are, however, threatened by accelerating sea-level rise and sediment deprivation due to human activity within upstream catchments, which result in their drowning and a reduction in their extent. Rising seas are also leading to an expansion of coastal flooding protection infrastructures, which might also represent another serious if poorly understood threat to salt marshes due to effects on the resuspension and accumulation of sediment during storms. Here, we use observations from the Venice Lagoon (Italy), a back-barrier system with no fluvial sediment input recently protected by storm-surge barriers, to show that most of the salt-marsh sedimentation (more than 70% in this case) occurs due to sediment reworking during storm surges. We also prove that the large, yet episodic storm-driven sediment supply is seriously reduced by operations of storm-surge barriers, revealing a critical competition between the objectives of protection against coastal flooding and preservation of natural ecosystems. Without complementary interventions and management policies that reduce barrier activations, the survival of coastal wetlands is even more uncertain
    corecore