14 research outputs found

    Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results

    Full text link
    We consider electrophoresis of a single charged colloidal particle in a finite box with periodic boundary conditions, where added counterions and salt ions ensure charge neutrality. A systematic rescaling of the electrokinetic equations allows us to identify a minimum set of suitable dimensionless parameters, which, within this theoretical framework, determine the reduced electrophoretic mobility. It turns out that the salt-free case can, on the Mean Field level, be described in terms of just three parameters. A fourth parameter, which had previously been identified on the basis of straightforward dimensional analysis, can only be important beyond Mean Field. More complicated behavior is expected to arise when further ionic species are added. However, for a certain parameter regime, we can demonstrate that the salt-free case can be mapped onto a corresponding system containing additional salt. The Green-Kubo formula for the electrophoretic mobility is derived, and its usefulness demonstrated by simulation data. Finally, we report on finite-element solutions of the electrokinetic equations, using the commercial software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on occasion of the CODEF 2008 conferenc

    A new model for simulating colloidal dynamics

    Full text link
    We present a new hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of spherical colloidal particles. The solvent is modeled on the level of the lattice-Boltzmann method while the molecular dynamics is done for the solute. The coupling between the two is implemented through a frictional force acting both on the solvent and on the solute, which depends on the relative velocity. A spherical colloidal particle is represented by interaction sites at its surface. We demonstrate that this scheme quantitatively reproduces the translational and rotational diffusion of a neutral spherical particle in a liquid and show preliminary results for a charged spherical particle. We argue that this method is especially advantageous in the case of charged colloids.Comment: For a movie click on the link below Fig

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids
    corecore