136 research outputs found

    Simulation of Fluid Flow During Direct Synthesis of H2_{2}O2_{2} in a Microstructured Membrane Reactor

    Get PDF
    A microstructured membrane reactor has been developed to overcome the safety and productivity challenge of the direct synthesis of hydrogen peroxide. A single membrane is employed for separate, continuous dosage of the gaseous reactants hydrogen and oxygen to the solid catalyst present in the aqueous solvent. Using a custom OpenFOAM® model, the impact of catalyst‐coated static mixers with different mixer geometries is studied. It is demonstrated that the custom fluid guiding elements outperform the investigated commercial static mixer under the flow conditions relevant to this application

    Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction

    Get PDF
    Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution, especially for stationary applications, could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. On the basis of equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation, a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Thermogravimetric experiments using Fe2_2O3_3, Fe3_3O4_4 and FeO indicate a three-step process for the reduction. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2_2O3_3 reduction with H2_2 under varying experimental conditions

    Distribution of Buxbaumia viridis (Moug. ex Lam. et DC.) Brid. ex Moug. et Nestl. (Bryophyta) in Montenegro

    Get PDF
    The present paper is a contribution to the knowledge of the distribution of the moss species Buxbaumia viridis in Montenegro. The records are from 14 known sites at elevations over 1300 m a.s.l. in the northern and north-eastern parts of the country. Population size is remarkable in Durmitor National Park at Crno jezero lake, where sporophytes can be found on ca 50 tree trunks

    Design and Reliability Performance Evaluation of Network Coding Schemes for Lossy Wireless Networks

    Get PDF
    This thesis investigates lossy wireless networks, which are wireless communication networks consisting of lossy wireless links, where the packet transmission via a lossy wireless link is successful with a certain value of probability. In particular, this thesis analyses all-to-all broadcast in lossy wireless networks, where every node has a native packet to transmit to all other nodes in the network. A challenge of all-to-all broadcast in lossy wireless networks is the reliability, which is defined as the probability that every node in the network successfully obtains a copy of the native packets of all other nodes. In this thesis, two novel network coding schemes are proposed, which are the neighbour network coding scheme and the random neighbour network coding scheme. In the two proposed network coding schemes, a node may perform a bit-wise exclusive or (XOR) operation to combine the native packet of itself and the native packet of its neighbour, called the coding neighbour, into an XOR coded packet. The reliability of all-to-all broadcast under both the proposed network coding schemes is investigated analytically using Markov chains. It is shown that the reliability of all-to-all broadcast can be improved considerably by employing the proposed network coding schemes, compared with non-coded networks with the same link conditions, i.e. same probabilities of successful packet transmission via wireless channels. Further, the proposed schemes take the link conditions of each node into account to maximise the reliability of a given network. To be more precise, the first scheme proposes the optimal coding neighbour selection method while the second scheme introduces a tuning parameter to control the probability that a node performs network coding at each transmission. The observation that channel condition can have a significant impact on the performance of network coding schemes is expected to be applicable to other network coding schemes for lossy wireless networks

    Hyper-precarious lives : Migrants, work and forced labour in the Global North

    Get PDF
    This paper unpacks the contested inter-connections between neoliberal work and welfare regimes, asylum and immigration controls, and the exploitation of migrant workers. The concept of precarity is explored as a way of understanding intensifying and insecure post-Fordist work in late capitalism. Migrants are centrally implicated in highly precarious work experiences at the bottom end of labour markets in Global North countries, including becoming trapped in forced labour. Building on existing research on the working experiences of migrants in the Global North, the main part of the article considers three questions. First, what is precarity and how does the concept relate to working lives? Second, how might we understand the causes of extreme forms of migrant labour exploitation in precarious lifeworlds? Third, how can we adequately theorize these particular experiences using the conceptual tools of forced labour, slavery, unfreedom and precarity? We use the concept of ‘hyper-precarity’ alongside notions of a ‘continuum of unfreedom’ as a way of furthering human geographical inquiry into the intersections between various terrains of social action and conceptual debate concerning migrants’ precarious working experiences

    Core and edge modeling of JT-60SA H-mode highly radiative scenarios using SOLEDGE3X–EIRENE and METIS codes

    Get PDF
    In its first phase of exploitation, JT-60SA will be equipped with an inertially cooled divertor, which can sustain heat loads of 10 MW/m2 on the targets for a few seconds, which is much shorter than the intended discharge duration. Therefore, in order to maximize the duration of discharges, it is crucial to develop operational scenarios with a high radiated fraction in the plasma edge region without unacceptably compromising the scenario performance. In this study, the core and edge conditions of unseeded and neon-seeded deuterium H-mode scenarios in JT-60SA were investigated using METIS and SOLEDGE3X–EIRENE codes. The aim was to determine whether, and under which operational conditions, it would be possible to achieve heat loads at the targets significantly lower than 10 MW/m2 and potentially establish a divertor-detached regime while keeping favorable plasma core conditions. In first analysis, an investigation of the edge parameter space of unseeded scenarios was carried out. Simulations at an intermediate edge power of 15 MW indicate that, without seeded impurities, the heat loads at the targets are higher than 10 MW/m2 in attached cases, and achieving detachment is challenging, requiring upstream electron densities at least above 4 × 1019 m−3. This points toward the need for impurity injection during the first period of exploitation of the machine. Therefore, neon seeding simulations were carried out, performing a seeding rate scan and an injected power scan while keeping the upstream electron density at the separatrix at 3 × 1019 m−3. They show that at 15 MW of power injected into the edge plasma, the inner target is easily detached and presents low heat loads when neon is injected. However, at the outer target, the heat fluxes are not lowered below 10 MW/m2, even when the power losses in the edge plasma are equal to 50% of the power crossing the separatrix. Therefore, the tokamak will probably need to be operated in a deep detached regime in its first phase of exploitation for discharges longer than a few seconds. In the framework of core–edge integrated modeling, using METIS, the power radiated in the core was computed for the most interesting cases

    FourQ on Embedded Devices with Strong Countermeasures Against Side-Channel Attacks

    Get PDF
    This work deals with the energy-efficient, high-speed and high-security implementation of elliptic curve scalar multiplication, elliptic curve Diffie-Hellman (ECDH) key exchange and elliptic curve digital signatures on embedded devices using FourQ and incorporating strong countermeasures to thwart a wide variety of side-channel attacks. First, we set new speed records for constant-time curve-based scalar multiplication, DH key exchange and digital signatures at the 128-bit security level with implementations targeting 8, 16 and 32-bit microcontrollers. For example, our software computes a static ECDH shared secret in 6.9 million cycles (or 0.86 seconds @8MHz) on a low-power 8-bit AVR microcontroller which, compared to the fastest Curve25519 and genus-2 Kummer implementations on the same platform, offers 2x and 1.4x speedups, respectively. Similarly, it computes the same operation in 496 thousand cycles on a 32-bit ARM Cortex-M4 microcontroller, achieving a factor-2.9 speedup when compared to the fastest Curve25519 implementation targeting the same platform. A similar speed performance is observed in the case of digital signatures. Second, we engineer a set of side-channel countermeasures taking advantage of FourQ\u27s rich arithmetic and propose a secure implementation that offers protection against a wide range of sophisticated side-channel attacks, including differential power analysis (DPA). Despite the use of strong countermeasures, the experimental results show that our FourQ software is still efficient enough to outperform implementations of Curve25519 that only protect against timing attacks. Finally, we perform a differential power analysis evaluation of our software running on an ARM Cortex-M4, and report that no leakage was detected with up to 10 million traces. These results demonstrate the potential of deploying FourQ on low-power applications such as protocols for the Internet of Things

    New national and regional bryophyte records, 45

    Full text link
    corecore