3 research outputs found

    Prediction of the species distribution of Cryptococcus neoformans throughout Turkey

    No full text
    Cryptococcus neoformans is a human pathogenic yeast that causes life-threatening infections especially in immunosuppressed patients. The environmental isolation of C.neoformans from Turkey was reported as early as 2004, although this was mostly from Eucalyptus camaldulensis colonization. Successful isolations were also reported from pomegranate (Punica granatum), oriental plane (Platanus orientalis), pine tree (Pinaceae), chestnut (Castanea sativa) and salt cedar (Tamarix hispida). The investigation of the relationship between the bioclimatic factors affecting the environmental isolation sites and the colonization of pathogens is a frequently used method. With this method, detailed risk maps can be generated in which environmental colonization can be estimated. The aim of this study was to use the high-resolution bioclimatic and previously-isolated yeasts' coordinates to create a valid model for the occurrence of C.neoformans in Turkey and provide insight into ecological processes. A machine learning approach using presence-only data software, maximum entropy (MaxEnt), was used to for the prediction of C.neoformans distribution. Climatic data and environmental bioclimatic variables from WorldClim were downloaded as 30 seconds spatial resolutions. The correlation between different Turkey bioclimatic layers were analyzed with ENMTools and similar layers were discarded. Forty-one different coordinates representing C.neoformans isolation points were used to generate a predictive map. The area under the curve and the omission rate were used to validate the model. Meanwhile, Jackknife tests were applied to enumerate the contribution of different environmental variables, and then to predict the final model. Maps were created using QGIS mapping software. In this study, we have shown that the coastal region of Anatolia, which is geographically located in the Northeastern Mediterranean Basin, as well as the entire Aegean region, carry an extremely high risk for the colonization of C.neoformans. Other areas which have not previously been reported for the isolation of C.neoformans were predicted to be potential colonization hotspots, including the western part of Ataturk Dam, the Amik Plain and the Bakirçay and Gediz valleys. The maximum temperature of the warmest month, the mean temperature of the warmest quarter and the precipitation of the coldest quarter were the most important factors influencing the model's predictions. It was determined that the humidity in the environment affected the colonization especially in November. In conclusion, we produced a C.neoformans colonization risk map of Turkey for the first time. Obtaining more regional data will facilitate the identification of the regions having similar risk. This approach is useful for the clinical prediagnosis of cryptococcosis cases, which may be more common in places with environmental niches. © 2019 Ankara Microbiology Society. All rights reserved

    Fourier transform infrared spectral evaluation for the differentiation of clinically relevant Trichophyton species

    No full text
    Routine mold identification methods have been established to provide actual data to facilitate reliable diagnoses in clinical laboratories, as well as the management of infection and health practice planning, particularly for dermatophytes. Some species of the Trichophyton genera, particularly T. rubrum and T. mentagrophytes complexes, exhibit more complexity in species recognition. In this study, the intriguing technique of Fourier-transform infrared (FT-IR) spectroscopy is evaluated for species recognition of Trichophyton spp. A total of 32 reference isolates, belonging to T. mentagrophytes (n. =. 7), T. rubrum (n. =. 21) complexes and Arthroderma spp. (n. =. 4), were included in the study. Numerous spectral window FTIR spectroscopy data were analyzed by principal component analysis and hierarchical clustering was performed. There were not any spectral ranges presenting clusters at the main Trichophyton species (e.g. T. rubrum, T. mentagrophytes and Arthroderma spp.). Notably, only T. violaceum (including T. yaoundei and T. soudanense) was clustered in several ranges. In intra-species evaluation, T. erinacei, belonging to the T. mentagrophytes complex, was distinguishable by FT-IR spectroscopy with different spectral range calculations. We suggested that further research with several reference and clinical isolates of Trichophyton species will be crucial to accurately identify intra-species of T. rubrum and T. mentagrophytes complexes. © 2013 Elsevier B.V

    The effect of Tween-80 on the differentiation of Trichophyton mentagrophytes and Trichophyton rubrum strains with FT-IR spectroscopy

    No full text
    Trichophyton mentagrophytes and Trichophyton rubrum, are two of the frequently identified dermatophyte species in routine microbiology laboratories. Although newer technologies may assist in species-level identification, direct application of these methods usually require improvement in order to obtain reliable identification of these species. Earlier data have shown that dermatophytes may be identified with FT-IR spectroscopy although there are some limitations. In particular, the organic bond ranges in FT-IR spectra showed more irregularity because of the eucaryotic complexity of the molds. In this study, Tween-80 which is an inorganic molecule, was added to the dermatophyte growth medium in order to investigate its effect on FT-IR spectroscopy analysis of dermatophytes. Nine reference dermatophyte strains [5 T.mentagrophytes complex (T.asteroides CBS 424.63, T.erinacei CBS 344.79, CBS 511.73, CBS 677.86, T.mentagrophytes CBS 110.65) and 4 T.rubrum complex strains with different morphotypes (T.fluviomuniense CBS 592.68, T.kuryangei CBS 422.67, T.raubitschekii CBS 102856, Trubrum CBS 392.58)] were included in the study. All strains were cultured on Sabouraud glucose agar either with or without 1% Tween-80 for three weeks. After the incubation period, superficial scrapings from each dermatophyte colony were analyzed using FT-IR spectroscopy. All measurements were performed in transmission mode between 4400 and 400 cm -1. Numerous spectral window data were analyzed by principal component analysis and hierarchical clustering was performed. The second derivations of spectral ranges revealed clear grouping of T.mentagrophytes complex and T.rubrum complex in association over five separate spectral ranges. The findings also showed that while all of the T.mentagrophytes strains contained lipid compounds in their mold structure after Tween-80 incubation (p< 0.025), T.rubrum strains did not. Based on these results, it was concluded that culture medium containing Tween-80 was sufficient to enable differentiation of T.mentagrophytes complex from T.rubrum complex by FT-IR spectroscopy. This effect might be attributed to the possible transfer of lipid compounds from culture to cell structure during growth. Further studies with the use of large number of reference strains and clinical isolates exposed to different environmental factors, such as antifungal agents and inorganic ions, are needed to support these data indicating favorable effect of Tween-80 on the differentiation of T.mentagrophytes and T.rubrum complexes by FT-IR spectroscopy
    corecore