48 research outputs found

    Porous Silica-Based Organic-Inorganic Hybrid Catalysts: A Review

    Full text link
    [EN] Hybrid organic-inorganic catalysts have been extensively investigated by several research groups in the last decades, as they allow combining the structural robust-ness of inorganic solids with the versatility of organic chemistry. Within the field of hybrid catalysts, synthetic strategies based on silica are among the most exploitable, due to the convenience of sol-gel chemistry, to the array of silyl-derivative precursors that can be synthesized and to the number of post-synthetic functionalization strategies available, amongst others. This review proposes to highlight these advantages, firstly describing the most common synthetic tools and the chemistry behind sol-gel syntheses of hybrid catalysts, then presenting exemplificative studies involving mono- and multi-functional silica-based hybrid catalysts featuring different types of active sites (acid, base, redox). Materials obtained through different approaches are described and their properties, as well as their catalytic performances, are compared. The general scope of this review is to gather useful information for those approaching the synthesis of organic-inorganic hybrid materials, while providing an overview on the state-of-the art in the synthesis of such materials and highlighting their capacities.This research was funded by Spanish Government (MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683) and MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783).Erigoni, A.; Díaz Morales, UM. (2021). Porous Silica-Based Organic-Inorganic Hybrid Catalysts: A Review. Catalysts. 11(1):1-39. https://doi.org/10.3390/catal11010079S13911

    Layered Materials with Catalytic Applications: Pillared andDelaminated Zeolites from MWW Precursors

    Full text link
    [EN] Delaminated and pillared zeolites are an innovative family of molecular sieves which introduced a different concept inside the synthesis of active catalysts or inorganic supports. These types of materials exhibit an elevated accessibility due to their open structure, characterized by the high external surface area without imposed restrictions controlled by the pore sizes. These open zeolites are conformed by crystalline ordered (pillared zeolites) or disordered (delaminated zeolites) individual layers, exhibiting textural properties which are favorable to carry out catalytic processes in which it is necessary to employ catalysts with completely accessible active sites. The elevated external surface area of these zeolites is profitable to generate more specific organic-inorganic materials, acting in this case as stable inorganic matrixes. The preparation of this open type-zeolites family is based on the modification of, previously synthesized, zeolitic precursors which are preexpanded to obtain the final delaminated or pillared zeolites which exhibit very different physicochemical properties compared with the starting precursors. Along this paper, the most relevantMWW-type high accessible zeoliticmaterials will be considered. Their nature, characteristics, and reactivity will be shown in the function of the employed synthesis method for their preparation and the postsynthesis treatments carried out, tuning their properties.The author thanks the Spanish Government (Consolider Ingenio 2010-MULTICAT (CSD2009–00050) and MAT2011–29020-C02-01) for the financial support.Díaz Morales, UM. (2012). Layered Materials with Catalytic Applications: Pillared andDelaminated Zeolites from MWW Precursors. ISRN Chemical Engineering. 2012(ID 537164):1-35. https://doi.org/10.5402/2012/537164S1352012ID 53716

    Ordered covalent organic frameworks, COFs and PAFs. From preparation to application

    Full text link
    [EN] Covalent organic frameworks, COFs, and their derived sub-groups based on auto-assembly of exclusivelyaromatic units, PAFs, are emerging into the advanced materials field due to their high free porous volume,structural regularity, robustness, hydrothermal stability, and functional variety. They present high gasuptake capacities and presence of stabilized active functions in the framework. This together with chargedlow-density structures combined with their organization through -conjugated system arrays, open thepossibilities of COFs and PAFs to be used as effective materials for adsorption, selective separation andcatalysis, and in nanotechnological applications. This review will be focused on self-assembly synthesis mechanisms, physico-chemical characteristics, and applications of this class of promising covalent porousorganic structures, out looking their possible future approaches and perspectives.This work was funded by the Spanish Government (Severo Ochoa program SEV-2012-0267 and MAT2014-52085-C2-1-P) and by the Generalitat Valenciana (Prometeo). The European Union isalso acknowledged by ERC-AdG-2014-671093 – SynCatMatch.Díaz Morales, UM.; Corma Canós, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews. 311:85-124. https://doi.org/10.1016/j.ccr.2015.12.010S8512431

    Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas

    Full text link
    [EN] Three families of organosiliceous materials with different structuration level, order, and textural properties (non-ordered, M41S, and SBA-15 type materials) were prepared incorporating in their structural framework chiral pyrrolidine units with variable content. Likewise, non-ordered mesoporous hybrid solids were obtained through a sol-gel process in a fluoride medium, while M41S and SBA-15 type materials were obtained through micellar routes in the presence of long-chain neutral surfactants or block copolymers. Thanks to appropriate characterization studies and catalytic tests for the Michael addition between butyraldehyde and beta-nitrostyrene, we showed how the void shapes and sizes present in the structure of hybrid materials control the diffusion of reactants and products, as well as confine transition states and reactive intermediates. The best catalytic results, considering activity and enantioselectivity, were achieved in the presence of a non-ordered material, NOH-Pyr-5%, which exhibited the highest Brunauer-Emmett-Teller (BET) area, with a 96% yield and a 82% ee for the Michael adduct.This research was funded by the Spanish Government(MAT2017-82288-C2-1-P), Severo Ochoa Excellence Program (SEV-2016-0683), and MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). S. Ll. is thankful for the predoctoral fellowship from MINECO for financial support (BES-2015-072627).Llopis-Perez, S.; Velty, A.; Díaz Morales, UM. (2019). Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas. Catalysts. 9(8):1-21. https://doi.org/10.3390/catal9080654S12198Kuschel, A., Drescher, M., Kuschel, T., & Polarz, S. (2010). Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not? Chemistry of Materials, 22(4), 1472-1482. doi:10.1021/cm903412eDíaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385gKadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080sHorcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie International Edition, 45(36), 5974-5978. doi:10.1002/anie.200601878Zhang, J., Han, X., Wu, X., Liu, Y., & Cui, Y. (2019). Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. ACS Sustainable Chemistry & Engineering, 7(5), 5065-5071. doi:10.1021/acssuschemeng.8b05887Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F., & Snejko, N. (2011). Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 40(37), 9589. doi:10.1039/c1dt10597cMelde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835Moreno, J. M., Velty, A., Díaz, U., & Corma, A. (2019). Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains. Chemical Science, 10(7), 2053-2066. doi:10.1039/c8sc04372hSzőllősi, G., Gombkötő, D., Mogyorós, A. Z., & Fülöp, F. (2018). Surface-Improved Asymmetric Michael Addition Catalyzed by Amino Acids Adsorbed on Laponite. Advanced Synthesis & Catalysis, 360(10), 1992-2004. doi:10.1002/adsc.201701627Feng, J., Li, X., & Cheng, J.-P. (2017). Enantioselective Organocatalyzed Vinylogous Michael Reactions of 3-Alkylidene Oxindoles with Enals. The Journal of Organic Chemistry, 82(3), 1412-1419. doi:10.1021/acs.joc.6b02582Bernardi, L., Fochi, M., Carbone, R., Martinelli, A., Fox, M. E., Cobley, C. J., … Carlone, A. (2015). Organocatalytic Asymmetric Conjugate Additions to Cyclopent-1-enecarbaldehyde: A Critical Assessment of Organocatalytic Approaches towards the Telaprevir Bicyclic Core. Chemistry - A European Journal, 21(52), 19208-19222. doi:10.1002/chem.201503352Afewerki, S., Ma, G., Ibrahem, I., Liu, L., Sun, J., & Córdova, A. (2015). Highly Enantioselective Control of Dynamic Cascade Transformations by Dual Catalysis: Asymmetric Synthesis of Polysubstituted Spirocyclic Oxindoles. ACS Catalysis, 5(2), 1266-1272. doi:10.1021/cs501975uMonge-Marcet, A., Pleixats, R., Cattoën, X., Man, M. W. C., Alonso, D. A., & Nájera, C. (2011). Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 35(12), 2766. doi:10.1039/c1nj20516aSagamanova, I., Rodríguez-Escrich, C., Molnár, I. G., Sayalero, S., Gilmour, R., & Pericàs, M. A. (2015). Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 5(11), 6241-6248. doi:10.1021/acscatal.5b01746Betancort, J. M., & Barbas, C. F. (2001). Catalytic Direct Asymmetric Michael Reactions:  Taming Naked Aldehyde Donors. Organic Letters, 3(23), 3737-3740. doi:10.1021/ol016700

    Active Base Hybrid Organosilica Materials based on Pyrrolidine Builder Units for Fine Chemicals Production

    Full text link
    [EN] The catalytic activity of "pyrrolidine type" fragments included or anchored in the mesoporous silica supports or polymeric frameworks have been fully reported for enantioselective transformation. Nevertheless, low attention was focused on their catalytic abilities to perform base-catalyzed reaction. Accordingly, hybrid materials including pyrrolidine fragments in the mesoporous silica supports were prepared following different synthesis methods, such as micellar and fluoride sol-gel routes in absence of structural directing agents. Their great catalytic performance was explored for various base-catalyzed reactions to the formation of C-C bond through Knoevenagel, Claisen-Schmidt and Henry condensations under microwave irradiation. The benefits of microwave irradiation combined with suitable catalytic properties of pyrrolidine hybrid materials with strong base sites and high accessibility to active centers, allowed carrying out successfully base-catalyzed condensation reactions for the production of fine chemicals. Moreover, the hybrid catalyst exhibited high selectivity and good stability over different catalytic cycles contributing to environmental sustainability.The authors are grateful for financial support from the Spanish Government, MAT2017-82288-C2-1-P and PID2020112590GB C21/AEI/10.13039/501100011033, and MULTY2HYCAT European project (EUHorizon 2020 funded project under grant agreement no. 720783).Llopis-Perez, S.; Velty, A.; Díaz Morales, UM. (2021). Active Base Hybrid Organosilica Materials based on Pyrrolidine Builder Units for Fine Chemicals Production. ChemCatChem. 13(23):5012-5024. https://doi.org/10.1002/cctc.202101031S50125024132

    Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons

    Full text link
    [EN] Different metalorganic lamellar hybrid materials based on associated nanoribbons were synthesized by the use of alkyl-benzyl monocarboxylate spacers, containing alkyl tails with variable lengths, which acted like structural growing inhibitors. These molecular agents were perpendicularly located and coordinated to aluminium nodes in the interlayer space, controlling the separation between individual structure sub-units. The hybrid materials were studied by X-ray diffraction (XRD), chemical and thermogravimetrical analysis (TGA), nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and field emission scanning electron microscopy (FESEM)/transmission electron microscopy (TEM), showing their physicochemical properties. The specific capacity of the metalorganic materials to be exfoliated through post-synthesis treatments, using several solvents due to the presence of 1D structure sub-units and a marked hydrophobic nature, was also evidenced.The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. acknowledges Predoctoral Fellowships from MINECO for economical support. The authors thank the MULTY2HYCAT EU-Horizon 2020 funded project under grant agreement no.720783.Moreno-Rodríguez, JM.; Velty, A.; Díaz Morales, UM. (2019). Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons. Materials. 12(12):1-13. https://doi.org/10.3390/ma12121953S1131212Nakagawa, K., Yamaguchi, K., Yamada, K., Sotowa, K.-I., Sugiyama, S., & Adachi, M. (2012). Synthesis and Characterization of Surface-Functionalized Layered Titanate Nanosheets Using Lamellar Self-Assembly as a Template. European Journal of Inorganic Chemistry, 2012(16), 2741-2748. doi:10.1002/ejic.201101136Koene, B. E., Taylor, N. J., & Nazar, L. F. (1999). An Inorganic Tire-Tread Lattice: Hydrothermal Synthesis of the Layered Vanadate [N(CH3)4]5V18O46 with a Supercell Structure. Angewandte Chemie International Edition, 38(19), 2888-2891. doi:10.1002/(sici)1521-3773(19991004)38:193.0.co;2-uVaradwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 3(9), 1100-1111. doi:10.1039/c6qi00179cDíaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181cRao, C. N. R., Ramakrishna Matte, H. S. S., & Maitra, U. (2013). Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie International Edition, 52(50), 13162-13185. doi:10.1002/anie.201301548Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130Gaona, A., Díaz, U., & Corma, A. (2017). Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C–C Bond Forming Reactions and Tandem Processes. Chemistry of Materials, 29(4), 1599-1612. doi:10.1021/acs.chemmater.6b04563Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990dWang, G.-B., Leus, K., Hendrickx, K., Wieme, J., Depauw, H., Liu, Y.-Y., … Van Der Voort, P. (2017). A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. Dalton Trans., 46(41), 14356-14364. doi:10.1039/c7dt02752dSenkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020Hoffmann, H. C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., … Brunner, E. (2011). High-Pressure in Situ129Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 133(22), 8681-8690. doi:10.1021/ja201951tYang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609aCarson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224Volkringer, C., Meddouri, M., Loiseau, T., Guillou, N., Marrot, J., Férey, G., … Latroche, M. (2008). The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorganic Chemistry, 47(24), 11892-11901. doi:10.1021/ic801624vSyozi, I. (1951). Statistics of Kagome Lattice. Progress of Theoretical Physics, 6(3), 306-308. doi:10.1143/ptp/6.3.306Bae, J., Lee, E. J., & Jeong, N. C. (2018). Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 54(50), 6458-6471. doi:10.1039/c8cc02348dBae, J., Choi, J. S., Hwang, S., Yun, W. S., Song, D., Lee, J., & Jeong, N. C. (2017). Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(29), 24743-24752. doi:10.1021/acsami.7b07299Kim, H. K., Yun, W. S., Kim, M.-B., Kim, J. Y., Bae, Y.-S., Lee, J., & Jeong, N. C. (2015). A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 137(31), 10009-10015. doi:10.1021/jacs.5b06637Bezverkhyy, I., Ortiz, G., Chaplais, G., Marichal, C., Weber, G., & Bellat, J.-P. (2014). MIL-53(Al) under reflux in water: Formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Microporous and Mesoporous Materials, 183, 156-161. doi:10.1016/j.micromeso.2013.09.015Alcock, N. W., Tracy, V. M., & Waddington, T. C. (1976). Acetates and acetato-complexes. Part 2. Spectroscopic studies. Journal of the Chemical Society, Dalton Transactions, (21), 2243. doi:10.1039/dt976000224

    Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C-C Bond Forming Reactions and Tandem Processes

    Full text link
    [EN] Novel bifunctional acid base monolayered hybrid catalysts (MLHMs), based on associated individual (organo)aluminosilicate sheets with amino and sulfonic pending groups located in the interlayer space, have been successfully prepared by direct alkaline hydrothermal synthesis and evaluated in consecutive catalytic transformations. Different characterization techniques such as chemical and thermogravimetrical analyses, X-ray diffraction, TEM microscopy, nuclear magnetic resonance (NMR), temperature programmed desorption of CO2 and NH3 (TPD), and textural measurements were used to show the physicochemical and structural nature of the materials, evidencing their effectiveness as functional acid, base, and acid base catalysts for different one pot two-step tandem reactions, which were performed in the presence of only one active and recoverable lamellar-type hybrid solid catalyst.The authors are grateful for financial support from the Spanish Government by MAT2014-52085-C2-1-P and Severo Ochoa Excellence Program SEV-2012-0267. A.G. thanks predoctoral fellowships from MINECO for economical support (reference number BES-2012-052429). The European Union is also acknowledged by ERC-AdG-2014-671093-SynCatMatch.Gaona Cordero, A.; Díaz Morales, UM.; Corma Canós, A. (2017). Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C-C Bond Forming Reactions and Tandem Processes. Chemistry of Materials. 29(4):1599-1612. https://doi.org/10.1021/acs.chemmater.6b04563S1599161229

    Hybrid organic-inorganic structured materials as single-site heterogeneous catalysts

    Full text link
    Catalyst selectivity is associated with well-defined homogeneous active sites. Transition metal complexes and organocatalysts are highly active and selective in the homogeneous phase, and their heterogenization by incorporating them into inorganic solid materials allows combining their excellent catalytic activity with improved separation, recovering and recycling properties. In this article, we present the structural characteristics and catalytic properties of hybrid organic inorganic materials in which the molecular catalysts are part of the inorganic structure, emphasizing the possibilities of periodic mesoporous hybrid materials and coordination polymers as single-site solid catalysts.We thank Spanish MICINN (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2011-29020-C02-01) and Generalitat Valenciana (PROMETEO project 2088/130) for financial support.Díaz Morales, UM.; Boronat Zaragoza, M.; Corma Canós, A. (2012). Hybrid organic-inorganic structured materials as single-site heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 468(2143):1927-1954. https://doi.org/10.1098/rspa.2012.0066S19271954468214

    Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia

    Full text link
    [EN] The application of layered zeolites of MWW topology in environmental catalysis has attracted growing attention in recent years; however, only a few studies have explored their performance in selective catalytic reduction with ammonia (NH3-SCR). Thus, our work describes, for the first time, the one-pot synthesis of Fe-modified NH3-SCR catalysts supported on MCM-22, MCM-36, and ITQ-2. The calculated chemical composition of the materials was Si/Al of 30 and 5 wt.% of Fe. The reported results indicated a correlation between the arrangement of MWW layers and the form of iron in the zeolitic structure. We have observed that one-pot synthesis resulted in high dispersion of Fe3+ sites, which significantly enhanced low-temperature activity and prevented N2O generation during the reaction. All of the investigated samples exhibited almost 100% NO conversion at 250 degrees C. The most satisfactory activity was exhibited by Fe-modified MCM-36, since 50% of NO reduction was obtained at 150 degrees C for this catalyst. This effect can be explained by the abundance of isolated Fe3+ species, which are active in low-temperature NH3-SCR. Additionally, SiO2 pillars present in MCM-36 provided an additional surface for the deposition of the active phase.Agnieszka Szymaszek-Wawryca gratefully acknowledges the financial support of the research from the National Science Centre Grant, Preludium 19 (no. 2020/37/N/ST5/00186). Monika Motak would like to kindly acknowledge AGH Grant "Excellence Initiative-Research University" (no. 501.696.7996) for the financial support. Bogdan Samojeden is thankful to AGH Grant (no. 16.16.210.476) for the foundation of the publication. Urbano Diaz acknowledges the support from the Government of Spain through the project PID2020-112590GB-C21/AEI/10.13039/501100011033.Szymaszek-Wawryca, A.; Díaz Morales, UM.; Samojeden, B.; Motak, M. (2022). Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Molecules. 27(9):1-24. https://doi.org/10.3390/molecules2709298312427

    Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions

    Full text link
    [EN] Bifunctional mesoporous hybrid materials, containing both proton sponges and acid groups, have been prepared following different synthetic routes: co-condensation processes (sol-gel or micellar one-pot routes) or post-synthetic grafting of the organic functionalities. 1,8-Bis(dimethylamino)naphthalene (DMAN), a proton sponge with high pK(a), was used as an organic functional builder base and 3-mercaptopropyltriethoxysilane (MPTES) as a pendant precursor of sulfonic acids. The bifunctional hybrid materials were extensively characterized and were investigated as heterogeneous catalysts for various one-pot C-C bond-forming cascade reactions such as deacetalization-Knoevenagel condensation or deacetalization-nitroaldol (Henry) reaction.The authors thank the Spanish Government for financial support by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267. EG thanks the Marie Curie Fellowship (FP7-PEOPLE-2009-IEF) for financial support.Gianotti, E.; Díaz Morales, UM.; Velty, A.; Corma Canós, A. (2013). Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions. Catalysis Science and Technology. 3(10):2677-2688. https://doi.org/10.1039/c3cy00269aS26772688310Shylesh, S., & Thiel, W. R. (2010). Bifunctional Acid-Base Cooperativity in Heterogeneous Catalytic Reactions: Advances in Silica Supported Organic Functional Groups. ChemCatChem, 3(2), 278-287. doi:10.1002/cctc.201000353Sharma, K. K., Buckley, R. P., & Asefa, T. (2008). Optimizing Acid−Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups. Langmuir, 24(24), 14306-14320. doi:10.1021/la8030107Bass, J. D., Solovyov, A., Pascall, A. J., & Katz, A. (2006). Acid−Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:  A Comparative Investigation of Model Primary Amine Catalysts. Journal of the American Chemical Society, 128(11), 3737-3747. doi:10.1021/ja057395cBass, J. D., & Katz, A. (2006). Bifunctional Surface Imprinting of Silica:  Thermolytic Synthesis and Characterization of Discrete Thiol−Amine Functional Group Pairs. Chemistry of Materials, 18(6), 1611-1620. doi:10.1021/cm052382jCoutinho, D., Madhugiri, S., & Balkus Jr., K. J. (2004). Synthesis and Characterization of Organosilane Functionalized DAM-1 Mesoporous Silica. Journal of Porous Materials, 11(4), 239-254. doi:10.1023/b:jopo.0000046351.21904.77Huh, S., Chen, H.-T., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System. Journal of the American Chemical Society, 126(4), 1010-1011. doi:10.1021/ja0398161Huh, S., Chen, H.-T., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2005). Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 44(12), 1826-1830. doi:10.1002/anie.200462424Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R., & Rothenberg, G. (2011). Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angewandte Chemie International Edition, 50(41), 9615-9619. doi:10.1002/anie.201101449Motokura, K., Tomita, M., Tada, M., & Iwasawa, Y. (2008). Acid-Base Bifunctional Catalysis of Silica-Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 14(13), 4017-4027. doi:10.1002/chem.200702048Huang, Y., Xu, S., & Lin, V. S.-Y. (2010). Bifunctionalized Mesoporous Materials with Site-Separated Brønsted Acids and Bases: Catalyst for a Two-Step Reaction Sequence. Angewandte Chemie International Edition, 50(3), 661-664. doi:10.1002/anie.201004572Shylesh, S., Wagner, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Cooperative Acid-Base Effects with Functionalized Mesoporous Silica Nanoparticles: Applications in Carbon-Carbon Bond-Formation Reactions. Chemistry - A European Journal, 15(29), 7052-7062. doi:10.1002/chem.200900851Jaroniec, M. (2006). Organosilica the conciliator. Nature, 442(7103), 638-640. doi:10.1038/442638aAlauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2006). Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation. Journal of the American Chemical Society, 128(27), 8718-8719. doi:10.1021/ja0622960Shylesh, S., Wagener, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions. Angewandte Chemie International Edition, 49(1), 184-187. doi:10.1002/anie.200903985Zeidan, R. K., Hwang, S.-J., & Davis, M. E. (2006). Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids. Angewandte Chemie International Edition, 45(38), 6332-6335. doi:10.1002/anie.200602243Huang, Y., Trewyn, B. G., Chen, H.-T., & Lin, V. S.-Y. (2008). One-pot reaction cascades catalyzed by base- and acid-functionalized mesoporous silica nanoparticles. New Journal of Chemistry, 32(8), 1311. doi:10.1039/b806664gYang, H., Li, G., Ma, Z., Chao, J., & Guo, Z. (2010). Three-dimensional cubic mesoporous materials with a built-in N-heterocyclic carbene for Suzuki–Miyaura coupling of aryl chlorides and C(sp3)-chlorides. Journal of Catalysis, 276(1), 123-133. doi:10.1016/j.jcat.2010.09.004Zhao, H., Yu, N., Wang, J., Zhuang, D., Ding, Y., Tan, R., & Yin, D. (2009). Preparation and catalytic activity of periodic mesoporous organosilica incorporating Lewis acidic chloroindate(III) ionic liquid moieties. Microporous and Mesoporous Materials, 122(1-3), 240-246. doi:10.1016/j.micromeso.2009.03.006Nguyen, T. P., Hesemann, P., Gaveau, P., & Moreau, J. J. E. (2009). Periodic mesoporous organosilica containing ionic bis-aryl-imidazolium entities: Heterogeneous precursors for silica-hybrid-supported NHC complexes. Journal of Materials Chemistry, 19(24), 4164. doi:10.1039/b900431aTrilla, M., Pleixats, R., Man, M. W. C., & Bied, C. (2009). Organic–inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations. Green Chemistry, 11(11), 1815. doi:10.1039/b916767fXie, Y., Sharma, K. K., Anan, A., Wang, G., Biradar, A. V., & Asefa, T. (2009). Efficient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica. Journal of Catalysis, 265(2), 131-140. doi:10.1016/j.jcat.2009.04.018Motokura, K., Tada, M., & Iwasawa, Y. (2007). Heterogeneous Organic Base-Catalyzed Reactions Enhanced by Acid Supports. Journal of the American Chemical Society, 129(31), 9540-9541. doi:10.1021/ja0704333Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272zSanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097kSanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., … Nicole, L. (2010). «Chimie douce»: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13(1-2), 3-39. doi:10.1016/j.crci.2009.06.001Ford, D. M., Simanek, E. E., & Shantz, D. F. (2005). Engineering nanospaces: ordered mesoporous silicas as model substrates for building complex hybrid materials. Nanotechnology, 16(7), S458-S475. doi:10.1088/0957-4484/16/7/022Pope, E. J. A., & Mackenzie, J. D. (1986). Sol-gel processing of silica. Journal of Non-Crystalline Solids, 87(1-2), 185-198. doi:10.1016/s0022-3093(86)80078-3Winter, R., Chan, J.-B., Frattini, R., & Jonas, J. (1988). The effect of fluoride on the sol-gel process. Journal of Non-Crystalline Solids, 105(3), 214-222. doi:10.1016/0022-3093(88)90310-9Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066jDíaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821jMehdi, A., Reyé, C., Brandès, S., Guilard, R., & Corriu, R. J. P. (2005). Synthesis of large-pore ordered mesoporous silicas containing aminopropyl groups. New Journal of Chemistry, 29(7), 965. doi:10.1039/b502848pKatz, A., & Davis, M. E. (2000). Molecular imprinting of bulk, microporous silica. Nature, 403(6767), 286-289. doi:10.1038/35002032Gianotti, E., Diaz, U., Coluccia, S., & Corma, A. (2011). Hybrid organic–inorganic catalytic mesoporous materials with proton sponges as building blocks. Physical Chemistry Chemical Physics, 13(24), 11702. doi:10.1039/c1cp20588aMokaya, R., & Jones, W. (1998). The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. Journal of Materials Chemistry, 8(12), 2819-2826. doi:10.1039/a806049eSing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126Tanev, P. T., & Pinnavaia, T. J. (1995). A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 267(5199), 865-867. doi:10.1126/science.267.5199.865Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., & Stucky, G. D. (2000). Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials, 12(8), 2448-2459. doi:10.1021/cm0010304Shylesh, S., Sharma, S., Mirajkar, S. ., & Singh, A. . (2004). Silica functionalised sulphonic acid groups: synthesis, characterization and catalytic activity in acetalization and acetylation reactions. Journal of Molecular Catalysis A: Chemical, 212(1-2), 219-228. doi:10.1016/j.molcata.2003.10.043Woźniak, K. (1996). Proton sponges: solid-state NMR spectra of ionic complexes of 1,8-bis(dimethylamino)naphthalene. Journal of Molecular Structure, 374(1-3), 317-326. doi:10.1016/0022-2860(95)08947-0Pozharskii, A. F. (1998). Naphthalene «proton sponges». Russian Chemical Reviews, 67(1), 1-24. doi:10.1070/rc1998v067n01abeh000377Seo, Y.-K., Park, S.-B., & Ho Park, D. (2006). Mesoporous hybrid organosilica containing urethane moieties. Journal of Solid State Chemistry, 179(4), 1285-1288. doi:10.1016/j.jssc.2006.01.021Van Rhijn, W. M., De Vos, D. E., Sels, B. F., & Bossaert, W. D. (1998). Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications, (3), 317-318. doi:10.1039/a707462jMelero, J. A., van Grieken, R., & Morales, G. (2006). Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews, 106(9), 3790-3812. doi:10.1021/cr050994hKawahara, K., Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 18(27), 3193. doi:10.1039/b807533fRodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0Sartori, G. (2004). Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes. Journal of Catalysis, 222(2), 410-418. doi:10.1016/j.jcat.2003.11.016Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., & Kaneda, K. (2006). Highly Efficient C−C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. The Journal of Organic Chemistry, 71(19), 7455-7462. doi:10.1021/jo0614745Poe, S. L., Kobašlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476lMotokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie International Edition, 47(48), 9230-9235. doi:10.1002/anie.200802515Lubisch, W., Beckenbach, E., Bopp, S., Hofmann, H.-P., Kartal, A., Kästel, C., … Möller, A. (2003). Benzoylalanine-Derived Ketoamides Carrying Vinylbenzyl Amino Residues:  Discovery of Potent Water-Soluble Calpain Inhibitors with Oral Bioavailability. Journal of Medicinal Chemistry, 46(12), 2404-2412. doi:10.1021/jm0210717Vlok, N., Malan, S. F., Castagnoli, N., Bergh, J. J., & Petzer, J. P. (2006). Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorganic & Medicinal Chemistry, 14(10), 3512-3521. doi:10.1016/j.bmc.2006.01.011Selvam, C., Jachak, S. M., Thilagavathi, R., & Chakraborti, A. K. (2005). Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 15(7), 1793-1797. doi:10.1016/j.bmcl.2005.02.039Nakayama, K., Ishida, Y., Ohtsuka, M., Kawato, H., Yoshida, K., Yokomizo, Y., … Watkins, W. J. (2003). MexAB-OprM-Specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorganic & Medicinal Chemistry Letters, 13(23), 4201-4204. doi:10.1016/j.bmcl.2003.07.024Díaz, U., García, T., Velty, A., & Corma, A. (2012). Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers. Chemistry - A European Journal, 18(28), 8659-8672. doi:10.1002/chem.201200170Schales, O., & Graefe, H. A. (1952). Arylnitroalkenes: A New Group of Antibacterial Agents1. Journal of the American Chemical Society, 74(18), 4486-4490. doi:10.1021/ja01138a004Zee-Cheng, K.-Y., & Cheng, C.-C. (1969). Experimental tumor inhibitors. Antitumor activity of esters of .omega.-aryl-psi-nitro-psi-alken-1-ol and related compounds. Journal of Medicinal Chemistry, 12(1), 157-161. doi:10.1021/jm00301a042Hruby, S. L., & Shanks, B. H. (2009). Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. Journal of Catalysis, 263(1), 181-188. doi:10.1016/j.jcat.2009.02.011Poli, E., Merino, E., Díaz, U., Brunel, D., & Corma, A. (2011). Different Routes for Preparing Mesoporous Organosilicas Containing the Tröger’s Base and Their Textural and Catalytic Implications. The Journal of Physical Chemistry C, 115(15), 7573-7585. doi:10.1021/jp2002854Corma, A., Domine, M., Gaona, J. A., Jordá, J. L., Navarro, M. T., Rey, F., … Nemeth, L. T. (1998). Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chemical Communications, (20), 2211-2212. doi:10.1039/a806702cHoffmann, F., & Fröba, M. (2011). Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev., 40(2), 608-620. doi:10.1039/c0cs00076
    corecore