216 research outputs found

    The hot-Jupiter Kepler-17b: discovery, obliquity from stroboscopic starspots, and atmospheric characterization

    Get PDF
    This paper reports the discovery and characterization of the transiting hot giant exoplanet Kepler-17b. The planet has an orbital period of 1.486 days, and radial velocity measurements from the Hobby-Eberly Telescope show a Doppler signal of 419.5^(+13.3)_(–15.6) m s^(–1). From a transit-based estimate of the host star's mean density, combined with an estimate of the stellar effective temperature T_(eff) = 5630 ± 100 from high-resolution spectra, we infer a stellar host mass of 1.06 ± 0.07 M☉ and a stellar radius of 1.02 ± 0.03 R☉. We estimate the planet mass and radius to be M_P = 2.45 ± 0.11 M_J and R_P = 1.31 ± 0.02 R_J. The host star is active, with dark spots that are frequently occulted by the planet. The continuous monitoring of the star reveals a stellar rotation period of 11.89 days, eight times the planet's orbital period; this period ratio produces stroboscopic effects on the occulted starspots. The temporal pattern of these spot-crossing events shows that the planet's orbit is prograde and the star's obliquity is smaller than 15°. We detected planetary occultations of Kepler-17b with both the Kepler and Spitzer Space Telescopes. We use these observations to constrain the eccentricity, e, and find that it is consistent with a circular orbit (e < 0.011). The brightness temperatures of the planet's infrared bandpasses areT_(3.6 µm) = 1880 ± 100 K and T_(4.5 µm) = 1770 ± 150 K. We measure the optical geometric albedo A_g in the Kepler bandpass and find A_g = 0.10 ± 0.02. The observations are best described by atmospheric models for which most of the incident energy is re-radiated away from the day side

    Photodissociation and induced chemical asymmetries on ultra-hot gas giants. A case study of HCN on WASP-76 b

    Full text link
    Recent observations have resulted in the detection of chemical gradients on ultra-hot gas giants. Notwithstanding their high temperature, chemical reactions in ultra-hot atmospheres may occur in disequilibrium, due to vigorous day-night circulation and intense UV radiation from their stellar hosts. The goal of this work is to explore whether photochemistry is affecting the composition of ultra-hot giant planets, and if it can introduce horizontal chemical gradients. In particular, we focus on hydrogen cyanide (HCN) on WASP-76 b, as it is a photochemically active molecule with a reported detection on only one side of this planet. We use a pseudo-2D chemical kinetics code to model the chemical composition of WASP-76 b along its equator. Our approach improves on chemical equilibrium models by computing vertical mixing, horizontal advection, and photochemistry. We find that production of HCN is initiated through thermal and photochemical dissociation of CO and N2 on the day side of WASP-76 b, which are subsequently transported to the night side via the equatorial jet stream. This process results in an HCN gradient with a maximal abundance on the planet's morning limb. We verified that photochemical dissociation is a necessary condition for this mechanism, as thermal dissociation alone proves insufficient. Other species produced via night-side disequilibrium chemistry are SO2 and S2. Our model acts as a proof of concept for chemical gradients on ultra-hot exoplanets. We demonstrate that even ultra-hot planets can exhibit disequilibrium chemistry and recommend that future studies do not neglect photochemistry in their analyses of ultra-hot planets.Comment: 15 pages, 9 figure

    A Spitzer Search for Water in the Transiting Exoplanet HD189733b

    Get PDF
    We present Spitzer Space Telescope observations of the extrasolar planet HD189733b primary transit, obtained simultaneously at 3.6 and 5.8 microns with the Infrared Array Camera. The system parameters, including planetary radius, stellar radius, and impact parameter are derived from fits to the transit light curves at both wavelengths. We measure two consistent planet-to-star radius ratios, (Rp/Rs)[3.6μ\mum] = 0.1560 +/- 0.0008(stat) +/- 0.0002(syst) and (Rp/Rs)[5.8μ\mum] = 0.1541 +/- 0.0009(stat) +/- 0.0009(syst), which include both the random and systematic errors in the transit baseline. Although planet radii are determined at 1%-accuracy, if all uncertainties are taken into account the resulting error bars are still too large to allow for the detection of atmospheric constituants like water vapour. This illustrates the need to observe multiple transits with the longest possible out-of-transit baseline, in order to achieve the precision required by transmission spectroscopy of giant extrasolar planets.Comment: Accepted in The Astrophysical Journal Letter

    Temperature-Pressure Profile of the hot Jupiter HD 189733b from HST Sodium Observations: Detection of Upper Atmospheric Heating

    Full text link
    We present transmission spectra of the hot Jupiter HD 189733b taken with the Space Telescope Imaging Spectrograph aboard HST. The spectra cover the wavelength range 5808-6380 Ang with a resolving power of R=5000. We detect absorption from the NaI doublet within the exoplanet's atmosphere at the 9 sigma confidence level within a 5 Ang band (absorption depth 0.09 +/- 0.01%) and use the data to measure the doublet's spectral absorption profile. We detect only the narrow cores of the doublet. The narrowness of the feature could be due to an obscuring high-altitude haze of an unknown composition or a significantly sub-solar NaI abundance hiding the line wings beneath a H2 Rayleigh signature. We compare the spectral absorption profile over 5.5 scale heights with model spectral absorption profiles and constrain the temperature at different atmospheric regions, allowing us to construct a vertical temperature profile. We identify two temperature regimes; a 1280 +/- 240 K region derived from the NaI doublet line wings corresponding to altitudes below ~ 500 km, and a 2800 +/- 400 K region derived from the NaI doublet line cores corresponding to altitudes from ~ 500-4000 km. The zero altitude is defined by the white-light radius of Rp/Rstar=0.15628 +/- 0.00009. The temperature rises with altitude, which is likely evidence of a thermosphere. The absolute pressure scale depends on the species responsible for the Rayleigh signature and its abundance. We discuss a plausible scenario for this species, a high-altitude silicate haze, and the atmospheric temperature-pressure profile that results. In this case, the high altitude temperature rise for HD 189733b occurs at pressures of 10^-5 to 10^-8 bar

    A Spitzer Search for Water in the Transiting Exoplanet HD189733b

    Get PDF
    We present Spitzer Space Telescope observations of the extrasolar planet HD189733b primary transit, obtained simultaneously at 3.6 and 5.8 microns with the Infrared Array Camera. The system parameters, including planetary radius, stellar radius, and impact parameter are derived from fits to the transit light curves at both wavelengths. We measure two consistent planet-to-star radius ratios, (Rp/Rs)[3.6μ\mum] = 0.1560 +/- 0.0008(stat) +/- 0.0002(syst) and (Rp/Rs)[5.8μ\mum] = 0.1541 +/- 0.0009(stat) +/- 0.0009(syst), which include both the random and systematic errors in the transit baseline. Although planet radii are determined at 1%-accuracy, if all uncertainties are taken into account the resulting error bars are still too large to allow for the detection of atmospheric constituants like water vapour. This illustrates the need to observe multiple transits with the longest possible out-of-transit baseline, in order to achieve the precision required by transmission spectroscopy of giant extrasolar planets.Comment: Accepted in The Astrophysical Journal Letter

    Ground-based Transit Spectroscopy of the Hot-Jupiter WASP-19b in the Near-infrared

    Get PDF
    We present ground-based measurements of the transmission and emission spectra of the hot-Jupiter WASP-19b in nine spectroscopic channels from 1.25 to 2.35 μm. The measurements are based on the combined analysis of time-series spectroscopy obtained during two complete transits and two complete secondary eclipses of the planet. The observations were performed with the MMIRS instrument on the Magellan II telescope using the technique of multi-object spectroscopy with wide slits. We compare the transmission and emission data to theoretical models to constrain the composition and thermal structure of the planet's atmosphere. Our measured transmission spectrum exhibits a scatter that corresponds to 1.3 scale heights of the planet's atmosphere, which is consistent with the size of spectral features predicted by theoretical models for a clear atmosphere. We detect the secondary eclipses of the planet at significances ranging from 2.2σ to 14.4σ. The secondary eclipse depths, and the significances of the detections increase toward longer wavelengths. Our measured emission spectrum is consistent with a 2250 K effectively isothermal one-dimensional model for the planet's dayside atmosphere. This model also matches previously published photometric measurements from the Spitzer Space Telescope and ground-based telescopes. These results demonstrate the important role that ground-based observations using multi-object spectroscopy can play in constraining the properties of exoplanet atmospheres, and they also emphasize the need for high-precision measurements based on observations of multiple transits and eclipses

    3.6 and 4.5 μm Phase Curves and Evidence for Non-equilibrium Chemistry in the Atmosphere of Extrasolar Planet HD 189733b

    Get PDF
    We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 μm, these data allow us to characterize the exoplanet's emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% ± 0.0061% in the 3.6 μm band and 0.0982% ± 0.0089% in the 4.5 μm band, corresponding to brightness temperature contrasts of 503 ± 21 K and 264 ± 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 μm, and we present new evidence indicating that the flux minimum observed in the 8 μm is likely caused by an overshooting effect in the 8 μm array. We obtain improved estimates for HD 189733b's dayside planet-star flux ratio of 0.1466% ± 0.0040% in the 3.6 μm band and 0.1787% ± 0.0038% in the 4.5 μm band, corresponding to brightness temperatures of 1328 ± 11 K and 1192 ± 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from Burrows et al. and conclude that fits to this planet's dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 μm phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 μm bands. We find that HD 189733b's 4.5 μm nightside flux is 3.3σ smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 μm absorption in this region. This result is consistent with our constraints on the planet's transmission spectrum, which also suggest excess absorption in the 4.5 μm band at the day-night terminator

    Non-detection of Helium in the Upper Atmospheres of Three Sub-Neptune Exoplanets

    Get PDF
    We present a search for helium in the upper atmospheres of three sub-Neptune size planets to investigate the origins of these ubiquitous objects. The detection of helium for a low density planet would be strong evidence for the presence of a primary atmosphere accreted from the protoplanetary nebula because large amounts of helium are not expected in the secondary atmospheres of rocky planets. We used Keck+NIRSPEC to obtain high-resolution transit spectroscopy of the planets GJ1214b, GJ9827d, and HD97658b around the 10,833 Ang He triplet feature. We did not detect helium absorption for any of the planets despite achieving a high level of sensitivity. We used the non-detections to set limits on the planets' thermosphere temperatures and atmospheric loss rates by comparing grids of 1D models to the data. We also performed coupled interior structure and atmospheric loss calculations, which suggest that the bulk atmospheres (winds) of the planets would be at most modestly enhanced (depleted) in helium relative to their primordial composition. Our lack of detections of the helium triplet for GJ1214b and GJ9827d are highly inconsistent with the predictions of models for the present day mass loss on these planets. Higher signal-to-noise data would be needed to detect the helium feature predicted for HD97658b. We identify uncertainties in the EUV fluxes of the host stars and the lack of detailed mass loss models specifically for cool and metal-enhanced atmospheres as the main limitations to the interpretation of our results. Ultimately, our results suggest that the upper atmospheres of sub-Neptune planets are fundamentally different than those of gas giant planets.Comment: AJ in pres

    A transition between the hot and the ultra-hot Jupiter atmospheres

    Get PDF
    [Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-infrared (NIR) atmospheric emission between hot and ultra-hot Jupiters. We measure this transition using secondary eclipse observations and interpret this phenomenon as changes in atmospheric properties, and more specifically in terms of transition from non-inverted to inverted thermal profiles. We examine a sample of 78 hot Jupiters with secondary eclipse measurements at 3.6 {\mu}m and 4.5 {\mu}m measured with Spitzer Infrared Array Camera (IRAC). We measure the deviation of the data from the blackbody, which we define as the difference between the observed 4.5 {\mu}m eclipse depth and that expected at this wavelength based on the brightness temperature measured at 3.6 {\mu}m. We study how the deviation between 3.6 and 4.5 {\mu}m changes with theoretical predictions with equilibrium temperature and incoming stellar irradiation. We reveal a clear transition in the observed emission spectra of the hot Jupiter population at 1660 +/- 100 K in the zero albedo, full redistribution equilibrium temperature. We find the hotter exoplanets have even hotter daysides at 4.5 {\mu}m compared to 3.6 {\mu}m, which manifests as an exponential increase in the emitted power of the planets with stellar insolation. We propose that the measured transition is a result of seeing carbon monoxide in emission due to the formation of temperature inversions in the atmospheres of the hottest planets. These thermal inversions could be caused by the presence of atomic and molecular species with high opacities in the optical and/or the lack of cooling species. We find that the population of hot Jupiters statistically disfavors high C/O planets (C/O>= 0.85).Comment: Accepted 11th May 202
    corecore