450 research outputs found

    Genome Editing for CNS Disorders.

    Get PDF
    Central nervous system (CNS) disorders have a social and economic burden on modern societies, and the development of effective therapies is urgently required. Gene editing may prevent or cure a disease by inducing genetic changes at endogenous loci. Genome editing includes not only the insertion, deletion or replacement of nucleotides, but also the modulation of gene expression and epigenetic editing. Emerging technologies based on ZFs, TALEs, and CRISPR/Cas systems have extended the boundaries of genome manipulation and promoted genome editing approaches to the level of promising strategies for counteracting genetic diseases. The parallel development of efficient delivery systems has also increased our access to the CNS. In this review, we describe the various tools available for genome editing and summarize in vivo preclinical studies of CNS genome editing, whilst considering current limitations and alternative approaches to overcome some bottlenecks

    Adeno-associated virus and lentivirus vectors: a refined toolkit for the central nervous system.

    Get PDF
    The last two decades have witnessed the increasing instrumentalization of viruses, which have progressively evolved into highly potent gene transfer vehicles for a wide spectrum of applications. In the context of the central nervous system (CNS), their unique gene delivery features and targeting specificities have been exploited not only to improve our understanding of basic neurobiology, but also to investigate diseases or deliver therapeutic candidates. As a result, we have started moving away from the opportunistic use of recombinant vectors that are derived from naturally existing viruses toward the rational engineering of tailored lentivirus (LV) and adeno-associated virus (AAV) vectors for specific use in the CNS

    Direct analysis of dried blood spots coupled with mass spectrometry: concepts and biomedical applications

    Get PDF
    Because of the emergence of dried blood spots (DBS) as an attractive alternative to conventional venous plasma sampling in many pharmaceutical companies and clinical laboratories, different analytical approaches have been developed to enable automated handling of DBS samples without any pretreatment. Associated with selective and sensitive MS-MS detection, these procedures give good results in the rapid identification and quantification of drugs (generally less than 3min total run time), which is desirable because of the high throughput requirements of analytical laboratories. The objective of this review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability. Finally, an overview of the different biomedical applications in which these concepts could be of major interest will be presented. Figure Direct analysis of dried blood spot

    Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum

    Get PDF
    The ability to overexpress full-length huntingtin or large fragments represents an important challenge to mimic Huntington's pathology and reproduce all stages of the disease in a time frame compatible with rodent life span. In the present study, tetracycline-regulated lentiviral vectors leading to high expression levels were used to accelerate the pathological process. Rats were simultaneously injected with vectors coding for the transactivator and wild type (WT) or mutated huntingtin (TRE-853-19Q/82Q) in the left and right striatum, respectively, and analyzed in the ‘on' and ‘off' conditions. Overexpression of TRE-853-19Q protein or residual expression of TRE-853-82Q in ‘off' condition did not cause any significant neuronal pathology. Overexpressed TRE-853-82Q protein led to proteolytic release of N-terminal htt fragments, nuclear aggregation, and a striatal dysfunction as revealed by decrease of DARPP-32 staining but absence of NeuN down-regulation. The differential effect on the DARPP-32/NeuN neuronal staining was observed as early as 1 month after injection and maintained at 3 months. In contrast, expression of a shorter htt form (htt171-82Q) did not require processing prior formation of nuclear aggregates and caused decrease of both DARPP-32 and NeuN neuronal markers at one month post-injection suggesting that polyQ pathology may be dependent on protein context. Finally, the reversibility of the pathology was assessed. Huntingtin expression was turn ‘on' for 1 month and then shut ‘off' for 2 months. Recovery of DARPP-32 immunoreactivity and clearance of huntingtin aggregates were observed in animals treated with doxycycline. These results suggest that a tetracycline-regulated system may be particularly attractive to model Huntington's disease and induce early and reversible striatal neuropathology in viv

    Use of the dried blood spot sampling process coupled with fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry: application to fluoxetine, norfluoxetine, reboxetine, and paroxetine analysis

    Get PDF
    The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 μL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30min at 60°C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the "Société Française des Sciences et des Techniques Pharmaceutiques” (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500ng mL−1 for fluoxetine and norfluoxetine and 20 to 500ng mL−1 for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20pg mL−1 for all the analytes. The stability of DBS was also evaluated at −20°C, 4°C, 25°C, and 40°C for up to 30days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive—derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studie

    CNS gene therapy: present developments and emerging trends accelerating industry-academia pathways

    Get PDF
    The recent success of first central nervous system gene therapies has reinvigorated the growing community of gene therapy researchers and strengthened the field's market position. We are witnessing an increase of clinical trials with long-term efficiency mainly for neurometabolic, neurodegenerative and neurodevelopmental diseases caused by loss-of-function mutations. The ever-expanding knowledge and accessibility to the most advanced tools allow enrichment of applications to more complex diseases. This gradually contributes towards sealing the gap between top diseases impacting current global health and those towards which gene therapy development is currently aimed. Here, we highlight innovative therapeutic approaches that have reached the clinics and outline the latest improvements of vector design and targeting. Finally, we address the pressing challenges faced by clinical trials and the direction they are heading

    Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus.

    Get PDF
    To date, delivery of neurotrophic factors has only allowed to transiently protect axotomized facial motoneurons against cell death. In the present report, long-term protection of these neurons was evaluated by continuously expressing the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) within the facial nucleus using a lentiviral vector system. The viral vector was injected unilaterally into the facial nucleus of 4-month-old Balb/C mice. In contrast to axotomy in other adult rodents, facial nerve lesion in these animals leads to a progressive and sustained loss and/or atrophy of >50% of the motoneurons. This model thus represents an attractive model to evaluate potential protective effects of neurotrophic factors for adult-onset motoneuron diseases, such as amyotrophic lateral sclerosis. One month after unilateral lentiviral vector injection, the facial nerve was sectioned, and the animals were killed 3 months later. Viral delivery of the GDNF gene led to long-term expression and extensive diffusion of GDNF within the brainstem. In addition, axotomized motoneurons were completely protected against cell death, because 95% of the motoneurons were present as demonstrated by both Nissl staining and choline acetyltransferase immunoreactivity. Furthermore, GDNF prevented lesion-induced neuronal atrophy and maintained proximal motoneuron axons, despite the absence of target cell reinnervation. This is the first evidence that viral-mediated delivery of GDNF close to the motoneuron cell bodies of the facial nucleus of adult mice can lead to complete and long-term protection against lesion-induced cell death

    Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington's disease.

    Get PDF
    Huntington's disease (HD) is a fatal neurodegenerative disease in which an early and selective vulnerability of striatal Spiny Projection Neurons is observed. However, several studies have highlighted the implication of glial cells, and in particular astrocytes, in the pathophysiological mechanisms of this disease. A better understanding of the respective contributions of neurons and astrocytes in HD is needed and would be important for the development of new therapeutic approaches. Today, no comparable in vivo models expressing the mutant HTT selectively in astrocytes or in neurons are available. In this study, we developed comparable cell-type specific mouse models expressing a fragment of Huntingtin specifically in neurons, astrocytes, or in both cell populations of the adult mouse basal ganglia circuit. This approach allowed us to characterize behavioral alterations occurring as soon as 4 weeks postinjection. Interestingly, less severe but significant behavioral alterations were also observed in the two cell-type specific models. We further showed that astrocytes are less affected by mHTT compared to neurons, in particular concerning mHTT aggregation. Additionally, a more indirect contribution of astrocytes compared to neurons was observed in several pathophysiological mechanisms such as astrogliosis and neuronal dysfunction. Finally, we showed that direct and indirect transcriptional alterations within the glial glutamatergic clearing system are caused by astrocytic and neuronal expression of mHTT, respectively. We anticipate that our study will help to better understand the contributions of astrocytes to HD and guide future therapeutic efforts. GLIA 2016;64:1841-1856

    Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin.

    Get PDF
    Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings
    corecore