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31 ABSTRACT

32 The recent success of first central nervous system gene therapies has reinvigorated the growing 

33 community of gene therapy researchers and strengthened the field’s market position. We are witnessing 

34 an increase of clinical trials with long-term efficiency mainly for neurometabolic, neurodegenerative and 

35 neurodevelopmental diseases caused by loss-of-function mutations. The ever-expanding knowledge 

36 and accessibility to the most advanced tools allow enrichment of applications to more complex 

37 diseases. This gradually contributes towards sealing the gap between top diseases impacting current 

38 global health and those towards which gene therapy development is currently aimed. Here, we highlight 

39 innovative therapeutic approaches that have reached the clinics and outline the latest improvements of 

40 vector design and targeting. Finally, we address the pressing challenges faced by clinical trials and the 

41 direction they are heading.  

42

43

44
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45 CURRENT STATUS OF GENE THERAPY   

46 The present level of gene therapy development offers unprecedented opportunities for central nervous 

47 system (CNS) diseases. Strategies inspired by several decades of knowledge are mainly focusing on 

48 genetic diseases caused by the loss-of-function mutations, where symptom management is often the 

49 sole treatment option. Orphan drug and rare paediatric disease fast track designation have contributed 

50 to the development of strategies for neurodegenerative, neurometabolic and neurodevelopmental 

51 disorders 1. Though, the application spectrum is being increasingly enriched by more complex 

52 disorders, including Alzheimer’s disease 2, Parkinson’s disease 3, and epilepsy 4. Academic laboratories 

53 have initially been at the forefront of the translational research work, paving the way toward gene 

54 therapy products that successfully reached the market 5. The pioneering gene therapies that were 

55 approved in Europe and/or USA include Glybera (alipogene tiparvovec) for lipoprotein lipase deficiency 

56 6, later withdrawn from the market for commercial reasons 7, Strimvelis (ex vivo hematopoietic stem 

57 and progenitor cell (HSPC) gene therapy) for adenosine deaminase deficiency-induced severe 

58 combined immunodeficiency (ADA-SCID) 8, Zynteglo for β-thalassemia 9 and Luxturna
 
(voretigene 

59 neparvovec) for inherited retinal dystrophy 10. For CNS indications, the first gene therapy drugs to 

60 receive marketing authorization were Zolgensma (onasemnogene abeparvovec) for spinal muscular 

61 atrophy (SMA) in 2019 11, and Libmeldy (ex vivo HSPC gene therapy) for metachromatic 

62 leukodystrophy (MLD) in 2020 12.The most recent marketing approval (August 2022) was granted to 

63 Upstaza™ (eladocagene exuparvovec) for aromatic L-amino acid decarboxylase (AADC) deficiency. 

64 Commercialization of these products and the ever-expanding portfolio of diseases targeted by gene 

65 therapy initiated a wave of interest of pharmacological companies. This has been reflected by both 

66 Zolgensma and Libmeldy, originally developed in academic environment, being later acquired by 

67 pharmaceutical companies. In 2020, the global gene therapy market size was valued at $ 2.26 billion, 

68 where SMA applications represented 41 % of revenue shares. By 2027, this market is estimated to 

69 bridge $ 35 billion globally 13. 

70

71 CNS GENE THERAPY: CLINICAL TRIALS

72 The abovementioned success was preceded by valuable lessons learned from the clinical trials 

73 conducted over time. For the CNS, early gene therapy trials applied ex vivo approach for leukodystrophy 

74 diseases 14,15. Lentivirally (LV) transduced CD34+ haematopoietic stem cells showed therapeutic 
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75 benefit in a safe and efficient manner, comparable to the allogenic stem-cell transplantation, formerly 

76 the only available treatment choice. Subsequently, LV-based in vivo strategies emerged, including 

77 dopamine replacement drug Prosavin-LV, for Parkinson’s disease (PD), developed by Oxford 

78 Biomedica. Prosavin-LV, directed on symptom management, achieved moderate improvements in 

79 motor behaviour at 6 and 12 months, lasting for up to four years in most patients 16. The time between 

80 2000 and 2010 was marked by the influx of adeno-associated vectors (AAV) based approaches with 

81 AAV2-GAD and AAV2-neurturin for PD, AAV2-ASPA for Canavan disease, and AAV2/5-NAGLU for 

82 Sanfilippo type B syndrome (MPSIIIB) 17. 

83 The recent years have offered growing market opportunities for CNS gene therapy, with an escalating 

84 launch of new clinical-stage biotech companies. Presently, rare disorders targeted by AAV are the 

85 predominant pipeline runners and would also be the central focus in the following sections. 

86 The gradually occurring shift of gene therapy interest by industry and young biotech firms, though often 

87 stemming from academic ground, may bring new solutions to issues that were not previously tackled. 

88

89 Neurometabolic diseases 

90 Lysosomal storage disorders (LSDs) are the major focus of current gene therapy pipeline for inherited 

91 neurometabolic diseases, including gangliosidoses, mucopolysaccharidoses (MPS) and metachromatic 

92 leukodystrophy. With enzymatic deficiency being their cause, this approach takes advantage of the fact 

93 that functional enzyme secreted by the transduced cells may be taken up by distal non-transduced cells 

94 through cross-correction 18. This way, therapeutic benefit may be reached by only modifying certain 

95 proportion of the CNS cells.

96 At the moment, extensive efforts are flowing into tackling GM1 and GM2 gangliosidoses. The AXO-

97 AAV-GM1 and AXO-AAV-GM2 of the Sio Gene Therapies Inc. pipeline are targeting GM1 

98 gangliosidoses and Tay-Sachs/Sandhoff disease, respectively. So far, ten patients have been 

99 intravenously administered with AAV9-based AXO-AAV-GM1 gene therapy in Phase 1/2 clinical study 

100 (NCT03952637), with encouraging risk: benefit outcomes. To reduce immune response to the viral 

101 capsid and/or the β-galactosidase protein following IV administration, immunosuppression was given 

102 prior to vector delivery, maintained for six months afterwards. The low- and high-dose patient cohorts 

103 presented with amended disease biomarkers such as GM1 ganglioside activity in cerebrospinal fluid 

104 (CSF) and β-galactosidase activity in the serum. In another Phase 1/2 clinical trial (NCT04669535), four 
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105 Tay-Sachs and Sandhoff disease patients received AXO-AAV-GM2 treatment. Two neurotrophic AAV8 

106 vectors delivering HEXA and HEXB genes in 1:1 ratio were co-administered into thalamus and cisterna 

107 magna. To our best knowledge, this is the first double vector CNS trial targeting thalamus, to ensure 

108 broad diffusion in the CNS. Both transduction of thalamus and diffusion in the CSF would lead to 

109 widespread coverage via axonal transport with connected brain structures 19. 

110 Passage Bio Inc., is striving to lead its GM1 gangliosidosis AAV-therapy through Phase 1/2 clinical trial. 

111 It employs the AAVhu68 serotype, constructed from the natural isolate carrying the beta-galactosidase 

112 (GLB1) gene. Improved spread in the brain is predicted by being administered directly into the cisterna 

113 magna. The safety and biomarker data of Imagine-1 trial (NCT04713475), for early infantile, low dose 

114 and late infantile, high dose cohorts are expected to be released later this year. 

115 Lysogen is also advancing its pipeline with GM1 gangliosidosis and MPS IIIA therapies. The LYSGM101 

116 candidate is now in the Phase I/II clinical trial (NCT04273269), in which AAVrh10 with GLB1 gene cDNA 

117 is injected at a dose of 2 x 1012 vg/mL of CSF into cisterna magna of two early onset and two late onset 

118 GM1 child patients 20.

119 For the MPS IIIA, also known as the Sanfilippo A Syndrome, following on promising safety and efficacy 

120 outcomes from Lysogen’s MPS IIIA Phase I/II trial 21, the AAVrh-10-based LYS-SAF302 (olenasufligene 

121 relduparvovec), carrying the SGSH gene cDNA is presently in Phase II/III testing (NCT03612869). 

122 Nineteen patients were dosed between February 2019 and March 2020 and improvement or 

123 stabilization of neurodevelopmental status in around half of them was confirmed after up to two-year 

124 follow-up. The complete results are underway and the company is now in discussion of the next steps 

125 22.

126 Other MPS conditions are mainly being tackled by Lysogen and Regenxbio. The Regenxbio has a 

127 Phase I/II clinical study (NCT03580083) underway, assessing the safety and tolerability of RGX-111. 

128 This is an AAV9- α-L-iduronidase (IDUA) gene therapy administered directly into the CNS via 

129 intracisternal injection of patients with MPS type I. In the trial for severe MPS II (NCT03566043) the 

130 RGX-121 agent with AAV9-based iduronate-2-sulfatase (I2S) expression cassette was administered 

131 into the CNS of patients (4 months - 5 years of age). The RGX-121 was well tolerated in all dose cohorts 

132 (1.3 x 1010, 6.5 x 1010, 2.0 x 1011), each containing three patients. No drug-related serious adverse 

133 events were reported for up to 2 years post-treatment. There was gradual reduction of heparan sulfate 
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134 CSF levels, which are increased in MPS II. Normal neurodevelopment was also demonstrated by 

135 continuous gain of skills in various areas 23.

136 There is s continuous development and clinical testing for different types of Batten disease, also 

137 regarded as neuronal ceroid lipofuscinoses (CLNs), on both academic and industrials grounds 24. 

138 A bold approach was adapted by Sondhi et al., where CLN2 gene was intraparenchymally delivered by 

139 AAVrh.10h to treat late infantile Batten disease in paediatric patients (NCT01161576). There was a 1.3 

140 - 2.6-fold increase of CLN gene product (TPP1) in cerebrospinal fluid post-therapy. Up to 47.5 % 

141 lowering of decline rate of motor and language function was recorded, compared to the European 

142 natural history cohort. Four out of seven children also showed reduced grey matter loss, detected by 

143 magnetic resonance imaging (MRI). However, this strategy did not outperform the conventional 

144 recombinant TPP1 therapy. With a more optimized vector design and possibly multiple sites of 

145 administration, gene therapy could present a one-and-done solution, as recombinant TPP1 therapy is 

146 currently required bi-weekly 25. 

147 At the industry level, Amicus Therapeutics released encouraging data with its PhaseI/II AAV9-based 

148 drug AT-GTX-502 (NCT03770572) for CLN3 Batten disease (17th Annual WORLDSymposiumTM 2021). 

149 The intrathecally-administered therapy was safe and well tolerated in children patients for up to 15 

150 months post-surgery, with early indications of disease stabilization. This program was advanced 

151 following discontinuation of the CLN6 Batten disease Phase I/II trial. The intrathecally-delivered AAV9 

152 therapeutic AT-GTX-501 (NCT04273243) showed disease stabilization at early timepoint of the trial, 

153 which was not sustained at the 24-months mark. 

154 Neurogene has freshly initiated its PhaseI/II trial for CLN5 Batten disease (NCT05228145) in which 

155 AAV9 therapeutic NGN-101 is administered via both intravitreal (IVT) and intracerebroventricular (ICV) 

156 injection. This is the first trial to investigate treatment efficacy on both ocular and neurodegenerative 

157 disease aspects. 

158

159 Neurodegenerative diseases

160 Gene therapy approaches for neurodegenerative diseases have witnessed their own evolution over 

161 time. For the PD, the treatment was initially relying on AAV vectors, focused on enhanced conversion 

162 of orally-taken levodopa into dopamine. This was achieved by delivering the Aromatic L-Amino Acid 

163 Decarboxylase (AADC) gene to express the AADC enzyme that facilitates this conversion. Such 
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164 treatment targeted to brain putamen was shown to be well tolerated, while restoring AADC expression 

165 in PD patients 26,27.

166 Lately, a clinical trial (NCT01973543) with AAV2-VY-AADC agent developed by Voyager Therapeutics, 

167 exhibited stable or improved motor function in the three-year follow-up in patients with moderately 

168 advanced PD 28. Here, the treatment was administered via intraoperative magnetic resonance imaging 

169 (iMRI) guidance, allowing visualization of the virus spread and thus efficient target coverage. Combined 

170 with the convection enhanced delivery (CED), this trial instigated the new era of intraparenchymal virus 

171 delivery 29. 

172 AADC deficiency disease itself also benefited from the AADC gene delivery. Promising outcomes from 

173 the earlier studies prompted AADC utilization to compensate for its loss-of function. In the clinical 

174 studies (NCT01395641 NCT02926066), the intraputaminal AAV2-hAADC- based eladocagene 

175 exuparvovec demonstrated durable safety profile, with notable motor and cognitive improvements 

176 persisting during the >5 years follow-up 30. Built on this success, the newly approved AADC drug 

177 Upstaza™ by PTC Therapeutics, Inc., is the first gene therapy on the market directly administered into 

178 the brain, available for paediatric patients over 18 months old.

179 Taysha Gene Therapies is moving forward with two programs for giant axonal neuropathy (GAN) and 

180 Rett syndrome. The AAV9-based TSHA-120 candidate is currently in a Phase I study (NCT02362438) 

181 to treat GAN, conducted by National Institute of Health (NIH). This program is the first to intrathecally 

182 (IT) dose a gene therapy in clinical setting. 

183 To target peripheral and autonomic CNS manifestations, Taysha is currently investigating drug delivery 

184 via the vagus nerve. In its study, GAN rats were administered AAV9/GAN via IT or IT plus vagus nerve 

185 injection 31. Twenty months post injection, IT plus vagus nerve AAV9/GAN was found to be more 

186 efficient than IT alone, based on the heart rate, blood pressure and respirations measurements 

187 comparable to the wild-type (WT) rats. Nerve fibre loss in dorsal columns of the spinal cord was shown 

188 to be prevented to greater extent than IT route only. These results were in agreement with subsequent 

189 study in dogs, where direct vagus nerve delivery of AAV9 CBh-GFP mediated robust transduction of 

190 neurons critical for autonomic nervous system function. Also, no sign of neuroinflammation or significant 

191 chronic inflammatory infiltrates were detected, supporting high safety profile of this approach. 

192 Assessment of the possibility of AAV9 re-dosing via vagus nerve is presently underway. 
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193 The company Passage Bio Inc. partnered with the University of Pennsylvania’s Gene Therapy program 

194 to run Phase 1/2 upliFT-D trial for Frontotemporal dementia (NCT04747431) and GALax-C trial for 

195 Krabbe disease (Globoid cell leukodystrophy) (NCT04771416). The Cohort 1 interim safety and 

196 biomarker data of the latter should be available by the end of the year. 

197 Finally, disease-modifying therapy termed AMT-130 for Huntington’s disease has lately seen 

198 encouraging progress amid the uniQure’s update on the ongoing U.S. Phase I/II clinical trial 

199 (NCT04120493). Following direct delivery of rAAV5-miHTT into the brain striatum, 53.8 % mean 

200 decrease of mutant Huntingtin was recorded in low dose-treated patients 12 months post-surgery. At 

201 this time point, the nerofilament light chain (NfL), a neuronal damage biomarker, also reached close to 

202 baseline levels. Successively, the AMT-130 European cohort PhaseI/II trial (NCT05243017) is currently 

203 enrolling new patients to follow up on the demonstrated safety in the previous trial. 

204 Most recently, AskbBio received a green light for Phase I/II trial with an AAV-based BV-101 drug, 

205 directly administered to the brain of early-stage HD patients 32. Unlike other strategies for HD, it is 

206 designed to restore cholesterol pathway in affected neurons by delivering CYP46A1, which shows lower 

207 expression in HD patients 33. This should allegedly lead to neuroprotection and improved mutant 

208 Huntingtin clearance and physical performance. The trial will begin in the last quarter of 2022. 

209 Interestingly, CYP46A1 was previously implicated in Phase I trial (NCT03706885), where it was 

210 pharmacologically stimulated in AD patients, with results underway. 

211 Although there is a dynamic clinical assessment of the mentioned diseases, the CNS gene therapy field 

212 has also observed halting of several other trials. 

213 Voyager Therapeutics recently announced moving its (mi)RNA HTT candidate VY-HTT01 for 

214 Huntington’s disease (HD) treatment into the clinics in the Phase I trial (NCT04885114). However, the 

215 study of this AAV1-base intraparenchymal drug was withdrawn before patient enrolment in the summer 

216 of 2021. 

217 Interestingly, in March 2021, Phase III study (NCT03842969) of ASO drug tominersen, conducted by 

218 Roche was also discontinued, as no clinical benefit was achieved compared to placebo. At frequent 

219 doses, tominersen even resulted in worsened condition. In the same month, Wave Life Sciences also 

220 discontinued Phase I/II trial of its two ASOs for HD (NCT04617847 and NCT04617860), due to lack of 

221 efficacy. 
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222 Also, the Phase I/II trial for GM2 gangliosidosis with AAV9-TSHA-101 candidate conducted by Taysha 

223 Therapeutics has been suspended while regulatory information is being required. These results have 

224 revealed safety concerns and technological bottlenecks that will have to be acted upon for successful 

225 clinical outcomes.

226

227 ONGOING DEVELOPMENTS 

228 As gene therapy treatment becomes available for more and more patients, there is a pressing urge to 

229 identify novel vector variants for targeted gene delivery, optimize manufacturing process at large scale, 

230 address delivery method efficiency and evade immune responses.

231 AAV variants to improve transduction

232 At present, majority of AAV capsids utilized in the clinics are in most cases natural serotypes 34. These 

233 AAV serotypes vary in their capsid protein sequences which affects their ability to transduce specific 

234 organs or cell types. Clinical data indicate that one of the limiting factors remains weak in vivo 

235 transduction or sub-optimal cell-type specific targeting 35. In recent years, novel viral vector variant 

236 generation, primarily to improve organ targeting, has been observed at high rate. The custom-designed 

237 capsids hold the promise of greatly improving delivery efficiency, which would allow administration of 

238 lower virus dose. This could help reduce side effects, that appear to be dose-dependent 36. Moreover, 

239 batches accounted for more doses could be manufactured, thus treating larger patient cohorts more 

240 economically. Availability of such capsids would positively impact patient eligibility, safety and efficacy 

241 of the treatment. 

242 Rational design and directed evolution have originally been at the forefront of novel capsid discovery. 

243 The rational design harnesses prior knowledge about AAV biology and structure, to generate capsid 

244 variants with desired properties by systematic assessment and refinement. The new variants are 

245 engineered via genetic mutation of capsid residues, insertion of non-viral parts or chemical 

246 modifications 37. In directed evolution, processes such as capsid shuffling of known serotypes, peptide 

247 insertion or error-prone PCR are employed to produce highly diverse capsid libraries. Most potent 

248 functional variants are recovered following multi-round selection process 38. Today, the state-of-art AAV 

249 capsid design is the focus of several laboratories and biotech start-ups.   Machine learning 

250 complemented by high throughput measurement and characterization methods are progressively 

251 becoming the new standard 3940. Here, automatic learning is facilitated by a collection of advanced 
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252 algorithms. The input data are readily used to predict possible outcomes of complex processes such as 

253 new AAV capsid design, based on the learned and integrated rules. The accuracy of the outcomes is 

254 in proportion to the amount of the input datasets. On top of this, integration of biological knowledge 

255 would produce robust results with smaller data size, considering the sequence-to-function correlation. 

256 Altogether, the typical outcome would deliver possible new capsids with their predicted function and 

257 efficiency 35. 

258 These applications drove, for example, the formation of Dyno Therapeutics, for the discovery and 

259 optimization of AAV vectors through artificial intelligence. The company has entered CNS gene therapy 

260 space through collaboration with Roche. Dyno employs its CapsidMap™ platform, employing machine 

261 learning combined with experimental data, for next-generation AAV vector development. In vivo delivery 

262 properties of new synthetic AAV capsids are measured in high throughput, harnessing the synthesis of 

263 DNA library and next-generation DNA sequencing. 

264 In the novel capsid identification, Voyager is advancing its RNA-driven TRACER (Tropism Redirection 

265 of AAV by Cell-type-specific Expression of RNA) platform. Cell-specific RNA expression is harnessed 

266 for capsid libraries, as it might pose a more realistic and reliable assessment of functional transduction 

267 than DNA-based screening. The technology is applied on AAV5 serotype, as there is low occurrence 

268 of pre-existing neutralizing antibodies in general population, which are the eligibility determinant for 

269 patients in clinical trials. The newly identified variant, VCAP-100 has outperformed the conventionally 

270 used AAV5 in brain transduction in rats and NHPs with 40-fold and 60-fold, respectively 41. Upon 

271 intravenous administration, (5 x 1013 viral genomes per kg), in cynomolgus monkeys, 20-fold greater 

272 brain transduction and 5-fold greater spinal cord transduction was recorded, compared to the AAV9. 

273 Both neuronal and glial cells were potently transduced across the whole brain region, but mainly in the 

274 thalamus, hippocampus, caudate, putamen, cerebellar cortex and deep cerebellar nuclei, suggesting 

275 applicability of VCAP-100 in various CNS diseases. 

276 Affinia Therapeutics and Taysha Gene Therapies are pursuing similar strategies. Harnessing the AAV 

277 evolutionary path, novel AAV capsid libraries are devised by advanced computational algorithms 

278 termed ancestral sequence reconstruction, or ASR 42. It enables characterization of variants with 

279 enhanced properties, by reconstructing ancestral AAVs to the known natural capsids. The newly 

280 designed capsids are then manufactured and individually evaluated in experiments by the use of 

281 specific barcodes. 
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282 Employing this workflow, a highly efficient gene therapy vector, Anc80, has been previously identified 

283 in the academic setting, from the AAV 1,2, 8 and 9 ancestry line. Initially showing robust targeting of 

284 muscle and liver, the synthetic Anc80L65 sub-variant was shown to be especially potent in mouse 

285 retina, following the sub retinal delivery 43. Encouraging outcomes were replicated in the same study in 

286 Rhesus macaques, proposing the vector for further clinical use in eye retina. 

287 In the murine brain, the Anc80L65 was characterized by Hudrey et al., where it reached transduction 

288 efficiency of neurons and astrocytes comparable to the conventional AAV9 after intravenous and 

289 intraparenchymal delivery 44. Via the intraceberoventricular route, Anc80L65 reached broader diffusion 

290 than AAV9, with expression extending to the cerebellum. This vector might be of particular interest for 

291 application to certain neurologic diseases, including mucopolysaccharidosis type IIIA 45, Batten disease 

292 46 or metachromatic leukodystrophy (MLD) 47 for its strong tropism for ependymal cells and choroid 

293 plexus. Indeed, the Anc80L65 capsid used for MLD therapy is currently in preclinical development at 

294 Affinia. Anc80L65 was also shown to have superior expression and targeting properties over AAV9 in 

295 CNS in adult cynomolgus monkeys following the lumbar puncture injection and cisternal magna 

296 injection. Furthermore, four-fold increase in the yield of this candidate carrying the ARSA gene was 

297 reached in collaboration with Lonza. Through a multi-year, non-exclusive contract, Lonza provides 

298 development and manufacturing services of Affinia’s lead candidates. 

299 Improving transgene expression: promoters

300 Apart from the lawful ownership for the company, new promoters designed in silico are being 

301 extensively considered to direct enhanced gene expression and cell-type specificity. There is an urgent 

302 need for such promoters, as limited treatment efficiency with low transgene expression and toxicity are 

303 still being observed due to unspecific transduction. Ubiquitous promoters are actually implemented in 

304 67% of clinical trials for CNS disorders, with CMV and CAG promoters being the most frequent 34. These 

305 two promoters are also the principal choice in clinical trials overall. This might pose an issue in the long-

306 term as it has been established that CMV enhancer, present in both CMV and CAG is often gradually 

307 silenced both in vitro and in vivo, due to CpG dinucleotide methylation 48,49. 

308 In July 2021, Affinia has partnered with the Institute of Molecular and Clinical Ophthalmology Basel 

309 (IOB) to tackle efficient gene expression, by identifying new rationally-designed next-generation 

310 promoters.
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311 Transgene clearance is another concern observed with robust synthetic promoters. It usually occurs 

312 due to cellular stress caused by transgene overexpression and thus imbalance in proper expression of 

313 other genes. Remarkably, the CMV and CAG promoters were outperformed by mouse PGK and hSYN 

314 within the AAV1 construct in brain and spinal cord of the in vivo models, though their usage has not yet 

315 been translated into the clinical setting 50. 

316

317 Cell type-specificity: miRNA detargeting strategy

318 To induce optimal transgene expression, Taysha therapeutics introduces a miRNA target component 

319 in its TSHA-102 candidate for treatment of Rett syndrome, presently in preclinical testing51. This allows 

320 controlled expression of the MECP2 transgene, which has previously shown dose-dependent toxicity. 

321 The system comprises AAV9-miniMECP2-miRARE vector, harnessing the miR-Responsive 

322 Autoregulatory Element (miRARE), for miRNA targeting. It serves to minimize possible overexpression 

323 of exogenous miniMECP2 in transduced cells by using CNS-relevant miRNAs, whose expression rises 

324 in correlation with MECP2. Therefore, overexpression of the transgene would increase expression of 

325 miRNA whose non-coding targets are comprised in the 3ʹ untranslated region of the transgene 

326 transcript. Following the binding of these miRNAs in the exogenous MECP2 mRNA, its expression is 

327 conditionally downregulated via endogenous RNAi machinery, creating a negative feedback loop. 

328 Preclinical efficacy of TSHA-102 was demonstrated in the knock-out (KO) mouse dose escalation study 

329 by intrathecal (IT) delivery. Here, over 50 % life extension of KO mice was observed following the 

330 maximum dose at P28 (8.8 x 1011 vg/mouse; human equivalent dose 2.86 x 1015 vg). At earlier 

331 administration points of P7 and P14, lifespan was extended with 10-fold lower dose. The apnoea 

332 frequency was reduced by over 50 % in the maximum dose KO group, while earlier administration points 

333 resulted in lowered apnoea frequency with 10-fold lower dose 52. This is a significant translational factor, 

334 as the respiratory health of Rett syndrome patients is often heavily compromised 53. 

335

336 CHALLENGES FOR CLINICAL TRIALS

337 As highlighted clinical trials for gene replacement therapies are beginning to produce a pipeline from 

338 identification of genetic cause through testing, manufacturing and delivery. The success of these trials 

339 has generated strategies around dosing, delivery and study design, although concerns remain – 

340 particularly about the permanent nature of many of the treatments 54. The rapid growth of gene therapies 
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341 and the fast-increasing populations of patients that could benefit, means the one of the biggest 

342 challenges may become simply obtaining clinical grade gene therapy products to bring to trials, a 

343 growing (and frustrating) barrier to new studies (Figure 1) 55. This is combined with the challenges of 

344 increase in scale as the number and range of treatments begins to grow exponentially (reviewed for 

345 AAV in 56). However, there are potentially valuable lessons from the COVID vaccine manufacture, which 

346 may be translatable to large scale GMP manufacture of other gene and cell therapy treatments 57. Even 

347 with potential improvements, the costs of development and treatment remain a concern, with one 

348 estimate that by 2034, 1.09 million patients will be treated by gene therapy with a total cost of $306 

349 billion 58.  

350

351 The real challenge

352 On a positive note, emerging manufacturing shortages and regulatory delays are symptoms of success 

353 in gene replacement therapies, which has offered hope to thousands of patients. However, this success 

354 has also introduced an understandable bias in the field of gene therapy for neurological disorders. As 

355 successes in delivering gene therapy treatments to rare genetic diseases stack up, more research 

356 groups and industrial partners have joined the field. 

357 But is this approach at risk of diminishing returns, as more companies and researchers chase 

358 increasingly rare diseases? Is there a more strategic way to capture the promise of gene therapy for 

359 improving global health and well-being? 

360 An uncomfortable truth for researchers in gene therapy is that these treatments are expensive, and may 

361 not be fairly available to all patients 59. One issue is that the focus on rare diseases means that currently 

362 the expense of R&D for many rare disease gene therapies areas orphan treatments, which are subject 

363 to higher costs per patient 60. 

364 Researchers interested in developing expensive new treatments may wish to focus on those with the 

365 largest impact on global health, and this may require shifting away from more gene replacement 

366 therapies for rare genetic disorders to industrial partners, and refocussing high risk research funding on 

367 diseases with less clear gene therapy avenues. 

368 The Parkinson’s field has led this effort, with mixed results (reviewed above). However, compared to 

369 industrial efforts, fundamental research is more robust to high risk approaches, and new approaches to 

370 treating Parkinson’s continue. Forays into Alzheimer’s Disease have also begun, in spite of enormous 
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371 challenges around identifying the mechanism of this common disease 61. Indeed, one treatment 

372 focusses on the first identified risk factor APOE4 homozygosity, by supplementing with the protective 

373 APOE2 variant (NCT03634007). Thus, in spite of the lack of clarity around how APOE variants increase 

374 risk of the disease, there is a potential ‘gene supplementation therapy’ for the approach.

375

376 Taking on the big challenge

377 One possible way forward may be a re-alignment of fundamental gene therapy research in neurology 

378 to refocus on the global burden of diseases. The global impact of different neurological diseases is 

379 systematically reviewed in the Global Burden of Diseases Study 62. A concern is the mismatch between 

380 the top diseases impacting global health and those towards which gene therapy development is 

381 currently aimed. Globally, stroke and migraine are the leading cause of age-standardised DALY rates, 

382 but currently there are no clinical trials for genetic therapies for either of these disorders.  We must 

383 descend to the third cause of DALYs, Alzheimer’s and other Dementias, to reach the first possible hope 

384 for a gene therapy treatment, which is receiving increasing interest 2. For epilepsy (5th) there is a single 

385 trial in the US ClinicalTrials database. Parkinson’s is 11th, and ‘Other neurological disorders’ for which 

386 so many gene therapy trials are targeted, comes in at the 12th even as a total. 

387 Stroke is an acute change in blood flow, but current treatment have recently extended the window for 

388 treatment from 4.5 to up to 24 hours 63 meaning that some genetic treatments, may be effective if 

389 delivered soon enough. What microRNA, siRNA or other targets may be possible to protect neurons? 

390 Migraine presents a different set of problems, here the challenge is less about the speed of intervention, 

391 and more about the route of delivery – are there non-invasive ways of delivering treatments that could 

392 lead to long term reduction in migraine severity? Treatments for migraine are rapidly changing with the 

393 introduction of novel monoclonal antibiotics, and there is potential for gene delivery 64 if research is 

394 guided in this direction. 

395 There are a growing number of research teams with hard-earned expertise in design and delivery of 

396 gene and genetic therapies, but they have traditionally mainly emerged from studies of rare genetic 

397 diseases where their expertise lies and the therapeutic approach is more straightforward. 

398 Collaborations bringing this gene therapy expertise with groups leading in mechanisms of complex 

399 diseases as stroke and migraine could open the doors for gene therapy to address leading global 

400 burdens of disease – if manufacturing can keep up.
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401

402 Conclusion

403 The recent months have witnessed significant clinical efforts in rare CNS disease treatment, both 

404 academia and industry-driven. There are still outstanding challenges, such as up-scaling the vector 

405 production and downstream processing, to be most likely tackled by the industry sector. However, we 

406 have endorsed substantial recession in biotechnology companies’ investments following the clinical trial 

407 underperformance of several therapeutics accompanied by the public market downturn. Although all 

408 drug research areas have been touched by this downfall, publicly traded gene therapy sector seemed 

409 to be especially susceptible, reflected in extremely decreased and volatile companies’ shares. The 

410 current financial situation is clearly pushing companies into tough capital conservation, leading to 

411 prioritisation of only highly promising activities further down their pipeline, ideally, with lower competitive 

412 dynamics. This may have notable future implications, like facing decelerating development process, as 

413 many research programs haven’t yet reached the clinic and might require several more years to prove 

414 their strategies efficient, provided that they will have enough financial means to do so. Despite this, new 

415 gene therapy approvals still emerged, maintaining the momentum, crucial for accelerating more 

416 therapies through clinical trials to help the patients suffering from these incurable diseases.  

417

418
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441 FIGURE LEGEND

442

443 Figure 1. The route towards a gene therapy for a complex disease.

444 The diseases that impact a major fraction of the general population are complex, so their aetiology is a 

445 combination of multiple and diverse genetic and environmental factors. The symptomatology affects 

446 different aspects of the nervous system physiology, which requires a careful selection of disease models  

447 to study and dissect the pathophysiology of the disease. The elements affected will range from the 

448 microscopic to the organic level and safety concerns must be taken into account when selecting what 

449 to target. Furthermore, the therapeutic approach will depend in whether treating the most pressing 

450 symptomatology or restoring low/high genetic expression to rescue part of the homeostasis. Depending 

451 on the therapeutic approach, the most convenient delivery route will also need to be tested. Reached 

452 this point, the testing through clinical trials of our gene therapy will be necessarily subjected to a close 

453 assessment of reliable biomarkers. The selection of biomarkers will be crucial to be able to assess the 

454 effectiveness of a gene therapy among an heterogeneous patient cohort in the most objective way 

455 possible.

456
457
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