37 research outputs found

    Oxidation kinetics and inverse isotope effect of marine nitrite-oxidizing isolates

    Get PDF
    Nitrification, the step-wise oxidation of ammonium to nitrite and nitrate, is important in the marine environment because it produces nitrate, the most abundant marine dissolved inorganic nitrogen (DIN) component and N-source for phytoplankton and microbes. This study focused on the second step of nitrification, which is carried out by a distinct group of organisms, nitrite-oxidizing bacteria (NOB). The growth of NOB is characterized by nitrite oxidation kinetics, which we investigated for 4 pure cultures of marine NOB (Nitrospina watsonii 347, Nitrospira sp. Ecomares 2.1, Nitrococcus mobilis 231, and Nitrobacter sp. 311). We further compared the kinetics to those of non-marine species because substrate concentrations in marine environments are comparatively low, which likely influences kinetics and highlights the importance of this study. We also determined the isotope effect during nitrite oxidation of a pure culture of Nitrospina (Nitrospina watsonii 347) belonging to one of the most abundant marine NOB genera, and for a Nitrospira strain (Nitrospira sp. Ecomares 2.1). The enzyme kinetics of nitrite oxidation, described by Michaelis-Menten kinetics, of 4 marine genera are rather narrow and fall in the low end of half-saturation constant (Km) values reported so far, which span over 3 orders of magnitude between 9 and >1000 µM NO2-. Nitrospina has the lowest Km (19 µM NO2-), followed by Nitrobacter (28 µM NO2-), Nitrospira (54 µM NO2-), and Nitrococcus (120 µM NO2-). The isotope effects during nitrite oxidation by Nitrospina watsonii 347 and Nitrospira sp. Ecomares 2.1 were 9.7 ± 0.8 and 10.2 ± 0.9‰, respectively. This confirms the inverse isotope effect of NOB described in other studies; however, it is at the lower end of reported isotope effects. We speculate that differences in isotope effects reflect distinct nitrite oxidoreductase (NXR) enzyme orientations

    High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary

    Get PDF
    Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 μmol m−2 d−1 and an overall emission of 0.18 Gg N2O y−1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere

    Nitrogen isotopic inventory of the Lena River Delta

    Get PDF
    Permafrost-affected soils around the Arctic Ocean contain a large reservoir of organic matter including nitrogen, which partly reach the river after thawing, degradation and erosion of permafrost. After mobilization, reactive remineralised nitrogen is either used for primary production, microbial processing or is simply transported to coastal waters. We have analyzed soil, suspended matter and dissolved inorganic and organic nitrogen for their contents and 15N stable isotope composition to create a baseline for a nitrogen inventory of the Lena River Delta in 2019/2020. We used samples from two transect cruises through the delta in March and August 2019, a monitoring program at Samoylov Island in the central delta (2019/2020), and different soil type samples from Samoylov Island. Our data shows that the nitrogen transported from the delta to the Laptev Sea were dominated by dissolved organic nitrogen (DON) and nitrate, which occur in similar amounts of approx. 10 μmol/L. DON was available during the whole year. Nitrate showed a clear seasonal pattern: increase from late summer until the spring flood, during summer the nitrate concentration are close to zero. During the spring flood the nitrogen concentration are higher with up to 100 μmol/L. The nitrogen stable isotope values of the different nitrogen components ranges mainly between 0.5 and 4.5‰, and were subsequently enriched from the soils via suspended particulate matter (SPM)/sediment and DON to nitrate. During the spring flood, the stable isotope signature of nitrate suggested a strong source of atmospheric deposition. The 15N values are depleted with appox. -8‰ and the 18O values are enriched up to 60‰. Our data provides a baseline for isoscape analysis and can be used as an endmember signal for modeling approaches

    Alkalinity and nitrate dynamics reveal dominance of anammox in a hyper-turbid estuary

    Get PDF
    Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. In heterotrophic temperate estuaries, anaerobic respiration of organic matter, e.g., by denitrification, can be an important source of TA. Denitrification is the anaerobic reduction of nitrate (NO3-) to elemental nitrogen (N2). By contrast, anammox yields N2 as its terminal product via comproportionation of ammonium (NH4+) and nitrite (NO2-); however, this occurs without release of TA as a byproduct. In order to investigate these two nitrate and nitrite respiration pathways and their resulting impact on TA generation, we sampled the highly turbid estuary of the Ems River, discharging into the North Sea in June 2020. During ebb tide, a transect was sampled from the Wadden Sea to the upper tidal estuary, where we additionally sampled fluid mud for incubation experiments and five vertical profiles in the hyper-turbid tidal river. The data reveal a strong increase of TA and dissolved inorganic carbon (DIC) in the tidal river, where stable nitrate isotopes indicate water column denitrification as the dominant pathway. However, in the fluid mud of the tidal river, the measured TA and the N2 incubation experiments imply only low denitrification rates, with the majority of the N2 being produced by anammox (&gt;90 %). The relative abundances of anammox and denitrification, respectively, thus exert a major control on the CO2 storage capacity of adjacent coastal waters.</p

    Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage

    Get PDF
    Metabolic activities in estuaries, especially these of large rivers, profoundly affect the downstream coastal biogeochemistry. Here, we unravel the impacts of large industrial port facilities, showing that elevated metabolic activity in the Hamburg port (Germany) increases total alkalinity (TA) and dissolved inorganic carbon (DIC) runoff to the North Sea. The imports of particulate inorganic carbon, particulate organic carbon, and particulate organic nitrogen (PIC, POC, and PON) from the upstream Elbe River can fuel up to 90 % of the TA generated in the entire estuary via calcium carbonate (CaCO3) dissolution. The remaining at least 10 % of TA generation can be attributed to anaerobic metabolic processes such as denitrification of remineralized PON or other pathways. The Elbe Estuary as a whole adds approximately 15 % to the overall DIC and TA runoff. Both the magnitude and partitioning among these processes appear to be sensitive to climatic and anthropogenic changes. Thus, with increased TA loads, the coastal ocean (in particular) would act as a stronger CO2 sink, resulting in changes to the overall coastal system's capacity to store CO2.</p

    Permafrost land-ocean interactions: fluxes, transport processes and degradation pathways

    Get PDF
    Permafrost-affected soils around the Arctic Ocean contain a large reservoir of organic matter including nitrogen, which partly reaches the riverine system after thawing, degradation and erosion of permafrost. After mobilization, reactive nitrogen in form of dissolved organic nitrogen (DON) ordissolved inorganic nitrogen (DIN: ammonium and nitrate) is either used for primary production, microbial turnover and/or is transported to coastal waters where it serves as a key source of nutrition for the marine food web. In this study, we have followed the nitrogen released from permafrost soil via the Lena River into the Laptev Sea and used the natural abundance of 15N stable isotopes to identify sources, sinks and processes. Therefore, we have investigated different soil. We present a comprehensive data set from two transect cruises (03/08 2019) through the delta, and the outcome of a monitoring program (2018 - 2021) at Samoylov Island in the central delta. High-frequency monitoring and cruise data shows that the nitrogen transported from the river to the Laptev Sea was dominated by DON and nitrate, which occurred in similar amounts of approx. 10 μmol L–1 in the river water. The nitrate concentration decreased during the early summer and increased from late summer throughout the winter until the spring flood. During the spring flood, the nitrogen concentration was up to ten times higher. Thus, spring floods transport approx. 20 % of the annual load of reactive nitrogen into the Laptev Sea just at the onset of the growing season. The nitrogen stable isotope values of the different nitrogen components ranged mainly between 0.5 and 4.5‰, and were subsequently enriched from the permafrost soils via suspended particulate matter/sediment and DON to nitrate, which indicate an oligotrophic ecosystem. Using a Bayesian mixing model, the stable isotope signature of nitrate suggested a strong source of atmospheric deposition during the spring flood. During the rest of the year, soils are the main source of the reactive nitrogen, which is transported to the marine realm

    The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marshall, T., Granger, J., Casciotti, K. L., Dahnke, K., Emeis, K.-C., Marconi, D., McIlvin, M. R., Noble, A. E., Saito, M. A., Sigman, D. M., & Fawcett, S. E. The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean. Communications Earth & Environment, 3(1), (2022): 151, https://doi.org/10.1038/s43247-022-00474-x.Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.This work was supported by the South African National Research Foundation (114673 and 130826 to T.M., 115335, 116142 and 129320 to S.E.F.); the US National Science Foundation (CAREER award, OCE-1554474 to J.G., OCE-1736652 to D.M.S. and K.L.C., OCE-05-26277 to K.L.C.); the German Federal Agency for Education and Research (DAAD-SPACES 57371082 to T.M.); the Royal Society (FLAIR fellowship to S.E.F.); and the University of Cape Town (T.M., J.G., S.E.F.). The authors also recognize the support of the South African Department of Science and Innovation’s Biogeochemistry Research Infrastructure Platform (BIOGRIP)

    Seasonal nitrogen fluxes of the Lena River Delta

    Get PDF
    The Arctic is nutrient limited, particularly by nitrogen, and is impacted by anthropogenic global warming which occurs approximately twice as fast compared to the global average. Arctic warming intensifies thawing of permafrost-affected soils releasing their large organic nitrogen reservoir. This organic nitrogen reaches hydrological systems, is remineralized to reactive inorganic nitrogen, and is transported to the Arctic Ocean via large rivers. We estimate the load of nitrogen supplied from terrestrial sources into the Arctic Ocean by sampling in the Lena River and its Delta. We took water samples along one of the major deltaic channels in winter and summer in 2019 and sampling station in the central delta over a one-year cycle. Additionally, we investigate the potential release of reactive nitrogen, including nitrous oxide from soils in the Delta. We found that the Lena transported nitrogen as dissolved organic nitrogen to the coastal Arctic Ocean and that eroded soils are sources of reactive inorganic nitrogen such as ammonium and nitrate. The Lena and the Deltaic region apparently are considerable sources of nitrogen to nearshore coastal zone. The potential higher availability of inorganic nitrogen might be a source to enhance nitrous oxide emissions from terrestrial and aquatic sources to the atmosphere
    corecore