13 research outputs found

    Quantitative Heterodonty in Crocodylia: Assessing Size and Shape Across Modern and Extinct Taxa

    Get PDF
    Heterodonty in Crocodylia and closely related taxa has not been defined quantitatively, as the teeth rarely have been measured. This has resulted in a range of qualitative descriptors, with little consensus on the condition of dental morphology in the clade. The purpose of this study is to present a method for the quantification of both size- and shape-heterodonty in members of Crocodylia. Data were collected from dry skeletal and fossil specimens of 34 crown crocodylians and one crocodyliform, resulting in 21 species total. Digital photographs were taken of each tooth and the skull, and the margins of both were converted into landmarks and semilandmarks. We expressed heterodonty through Foote’s morphological disparity, and a principal components analysis quantified shape variance. All specimens sampled were heterodont to varying degrees, with the majority of the shape variance represented by a ‘caniniform’ to ‘molariform’ transition. Heterodonty varied significantly between positions; size undulated whereas shape was significantly linear from mesial to distal. Size and shape appeared to be primarily decoupled. Skull shape correlated significantly with tooth shape. High size-heterodonty often correlated with relatively large caniniform teeth, reflecting a prioritization of securing prey. Large, highly molariform, distal teeth may be a consequence of high-frequency durophagy combined with prey size. The slender-snouted skull shape correlated with a caniniform arcade with low heterodonty. This was reminiscent of other underwater-feeding tetrapods, as they often focus on small prey that requires minimal processing. Several extinct taxa were very molariform, which was associated with low heterodonty. The terrestrial peirosaurid shared similarities with large modern crocodylian taxa, but may have processed prey differently. Disparity measures can be inflated or deflated if certain teeth are absent from the tooth row, and regression analysis may not best apply to strongly slender-snouted taxa. Nevertheless, when these methods are used in tandem they can give a complete picture of crocodylian heterodonty. Future researchers may apply our proposed method to most crocodylian specimens with an intact enough tooth row regardless of age, species, or rearing conditions, as this will add rigor to many life history studies of the clade

    High Frequencies of Theropod Bite Marks Provide Evidence for Feeding, Scavenging, and Possible Cannibalism in a Stressed Late Jurassic Ecosystem

    Get PDF
    Bite marks provide direct evidence for trophic interactions and competition in the fossil record. However, variations in paleoecological dynamics, such as trophic relationships, feeding behavior, and food availability, govern the frequency of these traces. Theropod bite marks are particularly rare, suggesting that members of this clade might not often focus on bone as a resource, instead preferentially targeting softer tissues. Here, we present an unusually large sample of theropod bite marks from the Upper Jurassic Mygatt-Moore Quarry (MMQ). We surveyed 2,368 vertebrate fossils from MMQ in this analysis, with 684 specimens (28.885% of the sample) preserving at least one theropod bite mark. This is substantially higher than in other dinosaur-dominated assemblages, including contemporaneous localities from the Morrison Formation. Observed bite marks include punctures, scores, furrows, pits, and striations. Striated marks are particularly useful, diagnostic traces generated by the denticles of ziphodont teeth, because the spacing of these features can be used to provide minimum estimates of trace maker size. In the MMQ assemblage, most of the striations are consistent with denticles of the two largest predators known from the site: Allosaurus and Ceratosaurus. One of the bite marks suggests that a substantially larger theropod was possibly present at the site and are consistent with large theropods known from other Morrison Formation assemblages (either an unusually large Allosaurus or a separate, large-bodied taxon such as Saurophaganax or Torvosaurus). The distribution of the bite marks on skeletal elements, particularly those found on other theropods, suggest that they potentially preserve evidence of scavenging, rather than active predation. Given the relative abundances of the MMQ carnivores, partnered with the size-estimates based on the striated bite marks, the feeding trace assemblage likely preserves the first evidence of cannibalism in Allosaurus

    Increasing Dietary Breadth Through Allometry: Bite Forces in Sympatric Australian Skinks

    Get PDF
    Ecomechanical measures of performance such as bite force may function as an indirect measure of niche. This study proposes that allometric changes in performance may contribute to niche separation, especially in a group where the specific mechanism(s) remains unclear. We surveyed the bite force and morphology of 5 wild caught, sympatric skink species in the Kimberley region of Western Australia. Skinks were collected from trapline fences, weighed, photographed, and maximum bite force was measured with a piezoresistive force sensor. Morphological metrics were derived from photographs of the dorsum. Normalized morphological traits indicate interspecific variability in form, particularly in forelimb length, which may be a result of habitat separation. Bite force showed strong, significantly positive, allometric scaling against most morphological traits. Tail length was the only morphological trait that scaled isometrically. Allometric changes in bite force may increase dietary breadth, allowing larger skinks to supplement their diet with larger, more durable prey. This study reveals that ecologically relevant traits may be explained by allometric differences coupled with size variation. Future work should focus on (1) an increase in sample size, (2) long-term measurement of diet selection, and (3) accessibility of prey items to our focal animals

    Varanus Panoptes (Yellow-Spotted Monitor) Toxic Prey Avoidance

    Get PDF
    Although large predatory animals are capable of capturing and consuming large prey, most regularly consume smaller prey (e.g., Hart and Hamrin 1990. In Hughes [ed.], Behavioural Mechanisms of Food Selection, pp. 235–253. Springer-Verlag, Berlin). Large monitor lizards are no exception. For example, Varanus bengalensis reaches 1.75 m in total length but 75% of its diet consists of small invertebrates (Auffenberg 1994. The Bengal Monitor. The University Press of Florida, Gainesville. 560 pp.). Generalist predators such as large monitor lizards use different foraging strategies to obtain different prey, a pattern well documented for V. bengalensis (Auffenberg 1994, op. cit.). One foraging behaviour noted was regular searches for dung beetles (Scarabaeidae) in the dung pats of (mainly) large mammals. Herein we document similar foraging behaviour in the Yellow-spotted Monitor, Varanus panoptes, in northern Australi

    Illustrating Ontogenetic change in the Dentition of the Nile Monitor Lizard, Varanus Niloticus: A Case Study in the Application of Geometric Morphometric Methods for the Quantification of Shape-Size Heterodonty

    No full text
    Many recent attempts have been made to quantify heterodonty in non-mammalian vertebrates, but the majority of these are limited to Euclidian measurements. One taxon frequently investigated is Varanus niloticus, the Nile monitor. Juveniles possess elongate, pointed teeth (caniniform) along the entirety of the dental arcade, whereas adults develop large, bulbous distal teeth (molariform). The purpose of this study was to present a geometric morphometric method to quantify V. niloticus heterodonty through ontogeny that may be applied to other non-mammalian taxa. Data were collected from the entire tooth row of 19 dry skull specimens. A semilandmark analysis was conducted on the outline of the photographed teeth, and size and shape were derived. Width was also measured with calipers. From these measures, sample ranges and allometric functions were created using multivariate statistical analyses for each tooth position separately, as well as overall measures of heterodonty for each specimen based on morphological disparity. The results confirm and expand upon previous studies, showing measurable shape-size heterodonty in the species with significant differences at each tooth position. Tooth size increases with body size at most positions, and the allometric coefficient increases at more distal positions. Width shows a dramatic increase at the distal positions with ontogeny, often displaying pronounced positive allometry. Dental shape varied in two noticeable ways, with the first composing the vast majority of shape variance: (i) caniniformy vs. molariformy and (ii) mesially leaning, \u27rounded\u27 apices vs. distally leaning, \u27pointed\u27 apices. The latter was twice as influential in the mandible, a consequence of host bone shape. Mesial teeth show no significant shape change with growth, whereas distal teeth change significantly due primarily to an increase in molariformy. Overall, heterodonty increases with body size concerning both tooth size and shape, but shape heterodonty changes in the mandible are much less pronounced. Although it is unclear to what degree V. niloticus specializes in hard prey items (durophagy), previous studies of varanid feeding behavior, along with research on analogous durophagous vertebrates, indicate a division of labor along the tooth row in adults, due to a possible transition to at least a partial durophagous niche. The geometric morphometric method proposed here, although not without its own limitations, may be ideal for use with a number of dental morphotypes in the future

    Using Striated Tooth Marks on Bone to Predict Body Size in Theropod Dinosaurs: A Model Based on Feeding Observations of Varanus Komodoensis, the Komodo Monitor

    No full text
    Mesozoic tooth marks on bone surfaces directly link consumers to fossil assemblage formation. Striated tooth marks are believed to form by theropod denticle contact, and attempts have been made to identify theropod consumers by comparing these striations with denticle widths of contemporaneous taxa. The purpose of this study is to test whether ziphodont theropod consumer characteristics can be accurately identified from striated tooth marks on fossil surfaces. We had three major objectives (1) to experimentally produce striated tooth marks and explain how they form; (2) to determine whether body size characteristics are reflected in denticle widths; and (3) to determine whether denticle characters are accurately transcribed onto bone surfaces in the form of striated tooth marks. We conducted controlled feeding trials with the dental analogue Varanus komodoensis (the Komodo monitor). Goat (Capra hircus) carcasses were introduced to captive, isolated individuals. Striated tooth marks were then identified, and striation width, number, and degree of convergence were recorded for each. Denticle widths and tooth/body size characters were taken from photographs and published accounts of both theropod and V. komodoensis skeletal material, and regressions were compared among and between the two groups. Striated marks tend to be regularly striated with a variable degree of branching, and may co-occur with scores. Striation morphology directly reflects contact between the mesial carina and bone surfaces during the rostral reorientation when defleshing. Denticle width is influenced primarily by tooth size, and correlates well with body size, displaying negative allometry in both groups regardless of taxon or position. When compared, striation widths fall within or below the range of denticle widths extrapolated for similar-sized V. komodoensisindividuals. Striation width is directly influenced by the orientation of the carina during feeding, and may underestimate but cannot overestimate denticle width. Although body size can theoretically be estimated solely by a striated tooth mark under ideal circumstances, many caveats should be considered. These include the influence of negative allometry across taxa and throughout ontogeny, the existence of theropods with extreme denticle widths, and the potential for striations to underestimate denticle widths. This method may be useful under specific circumstances, especially for establishing a lower limit body size for potential consumers

    Nile and Ornate Monitor Lizard Tooth and Jaw Morphology: Phylogenetically Relevant Characters and Founder Populations

    No full text
    Nile monitors (Varanus niloticus), most closely related to the Ornate monitor (V. ornatus), differs from its sister taxon primarily in geographic distribution, diet, and soft-tissues. The recent elevation of V. ornatus to species creates a problem for museums with osteological specimens that lack appropriate soft-tissue material, resulting in V. ornatus erroneously cataloged as V. niloticus. In order to identify osteological or dental characters that can be used to distinguish the two species, we examine tooth and jaw morphology using CT scans, digital and X-ray photography, in order to identify defining characters among wild-killed specimens of the two species, as well as from an invasive Florida population. V. niloticus exhibits significantly more pointed teeth along the mandible and among all size classes than those found in V. ornatus, though this may be obscured in the oldest specimens. Further, tooth form differs significantly between the two species, with V. niloticus teeth being more conical, with a more bulbous morphology found in V. ornatus. Florida V. niloticus are more homogeneous than their native African conspecifics, suggesting a founder effect. This research will allow clarification of museum specimen affinities, and supports on-going research into the morphological divergence of invasive animals from their parent populations

    Learning style preferences and academic success of preclinical allied health students

    No full text
    Student learning style modality preferences, in preclinical classes, were assessed using the visual-auralread/ write-kinesthetic (VARK) inventory. Preferences were assessed for 137 preclinical students, including those in nursing, physician\u27s assistant, physical therapy, athletic training, and natural science programs using the online VARK inventory. All classes contained a majority of multimodal and a significantly high proportion of kinesthetic learners. No correlations were noted between modality preference strength and assessment performance in general biology classes; significant correlations were discovered for kinesthetic preference among the same cohort in subsequent human anatomy (negative correlation) and general physiology (positive correlation) classes. Assessment performance of nursing students in an anatomy and physiology class resulted in correlations with aural (negative correlation) and visual (positive correlation) preference strengths. Study findings are used to evaluate the efficacy of nonomnimodal delivery of content-focused science classes, before the students have developed the background knowledge or skills required to contextualize the learning. © 2013 Association of Schools of Allied Health Professions, Wash., DC

    The Dry Season Shuffle: Gorges Provide Refugia for Animal Communities in Tropical Savannah Ecosystems

    No full text
    In the wet-dry tropics, animal species face the major challenges of acquiring food, water or shelter during an extended dry season. Although large and conspicuous animals such as ungulates and waterfowl migrate to wetter areas during this time, little is known of how smaller and more cryptic animal species with less mobility meet these challenges. We fenced off the entire entrance of a gorge in the Australian tropical savanna, offering the unique opportunity to determine the composition and seasonal movement patterns of the small vertebrate community. The 1.7 km-long fence was converted to a trapline that was deployed for 18-21 days during the early dry season in each of two years, and paired traps on both sides of the fence allowed us to detect the direction of animal movements. We predicted that semi-aquatic species (e.g., frogs and turtles) would move upstream into the wetter gorge during the dry season, while more terrestrial species (e.g., lizards, snakes, mammals) would not. The trapline captured 1590 individual vertebrates comprising 60 species. There was a significant bias for captures on the outside of the fence compared to the inside for all species combined (outside/inside = 5.2, CI = 3.7-7.2), for all vertebrate classes, and for specific taxonomic groups. The opposite bias (inside/outside = 7.3, N = 25) for turtles during the early wet season suggested return migration heading into the wet season. Our study revealed that the small vertebrate community uses the gorge as a dry season refuge. The generality of this unreplicated finding could be tested by extending this type of survey to tropical savannahs worldwide. A better understanding of how small animals use the landscape is needed to reveal the size of buffer zones around wetlands required to protect both semi-aquatic and terrestrial fauna in gorges in tropical savannah woodland, and thus in ecosystems in general
    corecore