1,035 research outputs found

    Oscillations of solar and atmospheric neutrinos

    Get PDF
    Motivated by recent results from SuperKamiokande, we study both solar and atmospheric neutrino fluxes in the context of oscillations of the three known neutrinos. We aim at a global view which identifies the various possibilities, rather than attempting the most accurate determination of the parameters of each scenario. For solar neutrinos we emphasise the importance of performing a general analysis, independent of any particular solar model and we consider the possibility that any one of the techniques --- chlorine, gallium or water Cerenkov --- has a large unknown systematic error, so that its results should be discarded. The atmospheric neutrino anomaly is studied by paying special attention to the ratios of upward and downward going nu_e and nu_mu fluxes. Both anomalies can be described in a minimal scheme where the respective oscillation frequencies are widely separated or in non-minimal schemes with two comparable oscillation frequencies. We discuss explicit forms of neutrino mass matrices in which both atmospheric and solar neutrino fluxes are explained. In the minimal scheme we identify only two `zeroth order' textures that can result from unbroken symmetries. Finally we discuss experimental strategies for the determination of the various oscillation parameters.Comment: 20 pages, 7 figures. Final version: one reference added; fit of atmospheric neutrinos improve

    Muon and Tau Neutrinos Spectra from Solar Flares

    Full text link
    Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeVComment: 14 pages, 4 figures, Vulcano Conference 200

    Annual modulations from secular variations: relaxing DAMA?

    Get PDF
    The DAMA collaboration reported an annually modulated rate with a phase compatible with a Dark Matter induced signal. We point out that a slowly varying rate can bias or even simulate an annual modulation if data are analyzed in terms of residuals computed by subtracting approximately yearly averages starting from a fixed date, rather than a background continuous in time. In the most extreme case, the amplitude and phase of the annual modulation reported by DAMA could be alternatively interpreted as a decennial growth of the rate. This possibility appears mildly disfavoured by a detailed study of the available data, but cannot be safely excluded. In general, a decreasing or increasing rate could partially reduce or enhance a true annual modulation, respectively. The issue could be clarified by looking at the full time-dependence of the DAMA total rate, not explicitly published so far

    Generation of continuous-wave THz radiation by use of quantum interference

    Get PDF
    We propose a scheme for generation of continuous-wave THz radiation. The scheme requires a medium where three discrete states in a Λ\Lambda configuration can be selected, with the THz-frequency transition between the two lower metastable states. We consider the propagation of three-frequency continuous-wave electromagnetic (e.m.) radiation through a Λ\Lambda medium. Under resonant excitation, the medium absorption can be strongly reduced due to quantum interference of transitions, while the nonlinear susceptibility is enhanced. This leads to very efficient energy transfer between the e.m. waves providing a possibility for THz generation. We demonstrate that the photon conversion efficiency is approaching unity in this technique.Comment: 18 pages, 4 figure

    Fricke and polymer gel 2D dosimetry validation using Monte Carlo simulation

    Get PDF
    Complexity in modern radiotherapy treatments demands advanced dosimetry systems for quality control. These systems must have several characteristics, such as high spatial resolution, tissue equivalence, three-dimensional resolution, and dose-integrating capabilities. In this scenario, gel dosimetry has proved to be a very promising option for quality assurance. In this study, the feasibility of Fricke and polymer gel dosimeters suitably shaped in form of thin layers and optically analyzed by visible light transmission imaging has been investigated for quality assurance in external radiotherapy. Dosimeter irradiation was carried out with a 6-MV photon beam (CLINAC 600C). The analysis of the irradiated dosimeters was done using two-dimensional optical transmission images. These dosimeters were compared with a treatment plan system using Monte Carlo simulations as a reference by means of a gamma test with parameters of 1 mm and 2%. Results show very good agreement between the different dosimetric systems: in the worst-case scenario, 98% of the analyzed points meet the test quality requirements. Therefore, gel dosimetry may be considered as a potential tool for the validation of other dosimetric systems.Fil: Vedelago, José Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Chacón Obando, D.. Universidad Nacional. Physics Department; Costa Rica. Universidad Nacional de Córdoba; ArgentinaFil: Malano, Francisco Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Conejeros, R.. Servicio de Radioterapia, Icos. Temuco, Chile;Fil: Figueroa, R.. Universidad de la Frontera; ChileFil: Garcia, D.. Servicio de Imagenes por Resonancia Magnética; ChileFil: González, G.. Servicio de Imagenes por Resonancia Magnética; ChileFil: Romero, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Santibañez, M.. Servicio de Imagenes por Resonancia Magnética; ChileFil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Velásquez, J.. Servicio de Radioterapia; ChileFil: Mattea, Facundo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valente, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad de La Frontera. Departamento de Ciencias Físicas; Chil

    Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model

    Full text link
    We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as μe+γ\mu \to e + \gamma, are also discussed in the supersymmetric extension of the MSM.Comment: 50 pages, 22 EPS figures, macro file ws-ijmpe.cls included, accepted for publication in Int. J. Mod. Phys.

    Anthropic solution to the magnetic muon anomaly: the charged see-saw

    Full text link
    We present models of new physics that can explain the muon g-2 anomaly in accord with with the assumption that the only scalar existing at the weak scale is the Higgs, as suggested by anthropic selection. Such models are dubbed "charged see-saw" because the muon mass term is mediated by heavy leptons. The electroweak contribution to the g-2 gets modified by order one factors, giving an anomaly of the same order as the observed hint, which is strongly correlated with a modification of the Higgs coupling to the muon.Comment: 21 pages, many equations despite the first word in the title. v3: loop function G_WN corrected, conclusions unchange

    Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet

    Full text link
    The metastable behavior of a kinetic Ising--like ferromagnetic model system in which a generic type of microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean--field approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the non-linear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence of an effective multiplicative noise in the system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section V has been revise

    Sterile neutrinos in cosmology and how to find them in the lab

    Get PDF
    A number of observed phenomena in high energy physics and cosmology lack their resolution within the Standard Model of particle physics. These puzzles include neutrino oscillations, baryon asymmetry of the universe and existence of dark matter. We discuss the suggestion that all these problems can be solved by new physics which exists only below the electroweak scale. The dedicated experiments that can confirm or rule out this possibility are discussed.Comment: Invited talk at XXIII Int. Conf. on Neutrino Physics and Astrophysics, May 25-31, Christchurch, New Zealan

    Testing the LMA solution with solar neutrinos independently of solar models

    Full text link
    We perform a comparative study of two methods of determining the survival probabilities of low, intermediate, and high energy solar neutrinos that emphasizes the general agreement between the Large Mixing Angle (LMA) solution and extant solar neutrino data. The first analysis is oscillation parameter-independent and the second analysis involves an approximate calculation of the survival probabilities in the three energy ranges that depends only on oscillation parameters. We show that future experiments like BOREXino, CLEAN, Heron, LENS and MOON, that measure pppp and 7^7Be neutrinos, will facilitate a stringent test of the LMA solution independently of the Standard Solar Model (SSM), without recourse to earth-matter effects. Throughout, we describe the role of SSM assumptions on our results. If the LMA solution passes the test without needing to be modified, it may be possible to establish that θx\theta_x is nonzero at more than 2σ2\sigma assuming the SSM prediction for the pppp flux is correct.Comment: Final SNO salt-phase data included in analysis. Version to appear in PL
    corecore