15,224 research outputs found
Extracting joint weak values with local, single-particle measurements
Weak measurement is a new technique which allows one to describe the
evolution of postselected quantum systems. It appears to be useful for
resolving a variety of thorny quantum paradoxes, particularly when used to
study properties of pairs of particles. Unfortunately, such nonlocal or joint
observables often prove difficult to measure weakly in practice (for instance,
in optics -- a common testing ground for this technique -- strong photon-photon
interactions would be needed). Here we derive a general, experimentally
feasible, method for extracting these values from correlations between
single-particle observables.Comment: 6 page
Identification of Decoherence-Free Subspaces Without Quantum Process Tomography
Characterizing a quantum process is the critical first step towards applying
such a process in a quantum information protocol. Full process characterization
is known to be extremely resource-intensive, motivating the search for more
efficient ways to extract salient information about the process. An example is
the identification of "decoherence-free subspaces", in which computation or
communications may be carried out, immune to the principal sources of
decoherence in the system. Here we propose and demonstrate a protocol which
enables one to directly identify a DFS without carrying out a full
reconstruction. Our protocol offers an up-to-quadratic speedup over standard
process tomography. In this paper, we experimentally identify the DFS of a
two-qubit process with 32 measurements rather than the usual 256, characterize
the robustness and efficiency of the protocol, and discuss its extension to
higher-dimensional systems.Comment: 6 pages, 5 figure
Conditional probabilities in quantum theory, and the tunneling time controversy
It is argued that there is a sensible way to define conditional probabilities
in quantum mechanics, assuming only Bayes's theorem and standard quantum
theory. These probabilities are equivalent to the ``weak measurement''
predictions due to Aharonov {\it et al.}, and hence describe the outcomes of
real measurements made on subensembles. In particular, this approach is used to
address the question of the history of a particle which has tunnelled across a
barrier. A {\it gedankenexperiment} is presented to demonstrate the physically
testable implications of the results of these calculations, along with graphs
of the time-evolution of the conditional probability distribution for a
tunneling particle and for one undergoing allowed transmission. Numerical
results are also presented for the effects of loss in a bandgap medium on
transmission and on reflection, as a function of the position of the lossy
region; such loss should provide a feasible, though indirect, test of the
present conclusions. It is argued that the effects of loss on the pulse {\it
delay time} are related to the imaginary value of the momentum of a tunneling
particle, and it is suggested that this might help explain a small discrepancy
in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts
Resolutions of standard modules over KLR algebras of type
Khovanov-Lauda-Rouquier algebras of finite Lie type are affine quasihereditary with standard modules labeled by Kostant partitions of . In type , we construct explicit projective resolutions of standard modules
Quantum Nonlocality in Two-Photon Experiments at Berkeley
We review some of our experiments performed over the past few years on
two-photon interference. These include a test of Bell's inequalities, a study
of the complementarity principle, an application of EPR correlations for
dispersion-free time-measurements, and an experiment to demonstrate the
superluminal nature of the tunneling process. The nonlocal character of the
quantum world is brought out clearly by these experiments. As we explain,
however, quantum nonlocality is not inconsistent with Einstein causality.Comment: 16 pages including 24 figure
Adaptive quantum state tomography improves accuracy quadratically
We introduce a simple protocol for adaptive quantum state tomography, which
reduces the worst-case infidelity between the estimate and the true state from
to . It uses a single adaptation step and just one
extra measurement setting. In a linear optical qubit experiment, we demonstrate
a full order of magnitude reduction in infidelity (from to ) for
a modest number of samples ().Comment: 8 pages, 7 figure
Clock synchronization with dispersion cancellation
The dispersion cancellation feature of pulses which are entangled in
frequency is employed to synchronize clocks of distant parties. The proposed
protocol is insensitive to the pulse distortion caused by transit through a
dispersive medium. Since there is cancellation to all orders, also the effects
of slowly fluctuating dispersive media are compensated. The experimental setup
can be realized with currently available technology, at least for a proof of
principle.Comment: 4 pages, 3 figure
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems
Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability
Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence
Using a two-photon interference technique, we measure the delay for
single-photon wavepackets to be transmitted through a multilayer dielectric
mirror, which functions as a ``photonic bandgap'' medium. By varying the angle
of incidence, we are able to confirm the behavior predicted by the group delay
(stationary phase approximation), including a variation of the delay time from
superluminal to subluminal as the band edge is tuned towards to the wavelength
of our photons. The agreement with theory is better than 0.5 femtoseconds (less
than one quarter of an optical period) except at large angles of incidence. The
source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure
- …