6,418 research outputs found
On the shape of the light profiles of early-type galaxies
We have obtained the best fit to the light profiles of a luminosity limited
sample of elliptical and S0 galaxies with a power law \rn, letting the exponent
remain free rather than keeping it fixed at  as in the well known \GV
formula. The introduction of a free parameter in the fitting formula (ranging
from  for  kpc to  for  kpc) is justified by
the existence of a good correlation between  and the global galaxian
parameters, such as total luminosity and scale-radius. This result seems to be
in line with the segregation of properties between the `ordinary' and `bright'
families of early-type galaxies, and has consequence for the claimed
independence of the shape of galaxy profiles with respect to the Fundamental
Plane parameters.Comment: 10 pages, postscript file including figures, PADOVA (archived file
  truncated during email transfer
Structure and kinematics of the peculiar galaxy NGC 128
This is a multiband photometric and spectroscopic study of the peculiar S0
galaxy NGC128. We present results from broad (B and R) and narrow band optical
CCD photometry, near (NIR) and far (FIR) infrared observations, long slit
spectroscopy, and Fabry-Perot interferometry (CIGALE). The peculiar peanut
shape morphology of the galaxy is observed both at optical and near-infrared
wavelengths. The stellar disk is thick and distorted (arc-bended), with a color
asymmetry along the major axis due to the presence of a large amount of dust,
estimated through NIR and FIR data of ~6x10^6 M_sun, in the region of
interaction with the companion galaxy NGC127. The color maps are nearly uniform
over the whole galaxy, but for the major axis asymmetry, and a small gradient
toward the center indicating the presence of a redder disk-like component. The
H_alpha image indeed reveals the existence of a tilted gaseous ``disk'' around
the center, oriented with the major axis toward the companion galaxy NGC127.
Long slit and CIGALE data confirm the presence of gas in a disk-like component
counter-rotating and inclined approximately of 50 deg. to the line of sight.
The mass of the gas disk in the inner region is ~2.7x10^4 M_sun. The stellar
velocity field is cylindrical up to the last measured points of the derived
rotation curves, while the velocity dispersion profiles are typical for an S0
galaxy, but for an extended constant behaviour along the minor axis.Comment: accepted for pubblication in A&A Supp
Fifty Years of Quasars: Physical Insights and Potential for Cosmology
Last year (2013) was more or less the 50th anniversary of the discovery of
quasars. It is an interesting time to review what we know (and don't know)
about them both empirically and theoretically. These compact sources involving
line emitting plasma show extraordinary luminosities extending to one thousand
times that of our Milky Way in emitting volumes of a few solar system diameters
(bolometric luminosity log L 44-48 [erg s]: D=1-3 light
months   -  gravitational radii). The advent of 8-10 meter
class telescopes enables us to study them spectroscopically in ever greater
detail.
  In 2000 we introduced a 4D Eigenvector 1 parameters space involving optical,
UV and X-Ray measures designed to serve as a 4D equivalent of the 2D
Hertzsprung-Russell diagram so important for depicting the diversity of stellar
types and evolutionary states. This diagram has revealed a principal sequence
of quasars distinguished by Eddington ratio (proportional to the accretion rate
per unit mass). Thus while stellar differences are primarily driven by the mass
of a star, quasar differences are apparently driven by the ratio of
luminosity-to-mass.
  Out of this work has emerged the concept of two quasars populations A and B
separated at Eddington ratio around 0.2 which maximizes quasar multispectral
differences. The mysterious 8% of quasars that are radio-loud belong to
population B which are the lowest accretors with the largest black hole masses.
Finally we consider the most extreme population A quasars which are the highest
accretors and in some cases are among the youngest quasars. We describe how
these sources might be exploited as standard candles for cosmology.Comment: Accepted for publication in Journal of Physics Conference Series (10
  pages, 4 figures). Invited Lecture at International Symposium on the Physics
  of Ionized Gas (SPIG 2014), Belgrade 26-29 August 201
The evolution of the number density of compact galaxies
We compare the number density of compact (small size) massive galaxies at low
and high redshift using our Padova Millennium Galaxy and Group Catalogue
(PM2GC) at z=0.03-0.11 and the CANDELS results from Barro et al. (2013) at
z=1-2. The number density of local compact galaxies with luminosity weighted
(LW) ages compatible with being already passive at high redshift is compared
with the density of compact passive galaxies observed at high-z. Our results
place an upper limit of a factor ~2 to the evolution of the number density and
are inconsistent with a significant size evolution for most of the compact
galaxies observed at high-z. The evolution may be instead significant (up to a
factor 5) for the most extreme, ultracompact galaxies. Considering all compact
galaxies, regardless of LW age and star formation activity, a minority of local
compact galaxies (<=1/3) might have formed at z<1. Finally, we show that the
secular decrease of the galaxy stellar mass due to simple stellar evolution may
in some cases be a non-negligible factor in the context of the evolution of the
mass-size relation, and we caution that passive evolution in mass should be
taken into account when comparing samples at different redshifts.Comment: ApJ in pres
Scaling relations of cluster elliptical galaxies at z~1.3. Distinguishing luminosity and structural evolution
[Abridged] We studied the size-surface brightness and the size-mass relations
of a sample of 16 cluster elliptical galaxies in the mass range
10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS
J0848+4453 at z=1.27. Our aim is to assess whether they have completed their
mass growth at their redshift or significant mass and/or size growth can or
must take place until z=0 in order to understand whether elliptical galaxies of
clusters follow the observed size evolution of passive galaxies. To compare our
data with the local universe we considered the Kormendy relation derived from
the early-type galaxies of a local Coma Cluster reference sample and the WINGS
survey sample. The comparison with the local Kormendy relation shows that the
luminosity evolution due to the aging of the stellar content already assembled
at z=1.27 brings them on the local relation. Moreover, this stellar content
places them on the size-mass relation of the local cluster ellipticals. These
results imply that for a given mass, the stellar mass at z~1.3 is distributed
within these ellipticals according to the same stellar mass profile of local
ellipticals. We find that a pure size evolution, even mild, is ruled out for
our galaxies since it would lead them away from both the Kormendy and the
size-mass relation. If an evolution of the effective radius takes place, this
must be compensated by an increase in the luminosity, hence of the stellar mass
of the galaxies, to keep them on the local relations. We show that to follow
the Kormendy relation, the stellar mass must increase as the effective radius.
However, this mass growth is not sufficient to keep the galaxies on the
size-mass relation for the same variation in effective radius. Thus, if we want
to preserve the Kormendy relation, we fail to satisfy the size-mass relation
and vice versa.Comment: Accepted for publication in A&A, updated to match final journal
  versio
Assessment of the radiological impact of a decommissioning nuclear power plant in Italy
The assessment of the radiological impact of a decommissioning Nuclear Power
Plant is presented here through the results of an environmental monitoring
survey carried out in the area surrounding the Garigliano Power Plant. The
levels of radioactivity in soil, water, air and other environmental matrices
are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma}
equivalent dose rate are measured. Radioactivity levels of the samples from the
Garigliano area are analyzed and then compared to those from a control zone
situated more than 100 km away. Moreover, a comparison is made with a previous
survey held in 2001. The analyses and comparisons show no significant
alteration in the radiological characteristics of the area surroundings the
plant, with an overall radioactivity depending mainly from the global fallout
and natural sources.Comment: 13 pages, 6 figures, 2 table
- …
