[Abridged] We studied the size-surface brightness and the size-mass relations
of a sample of 16 cluster elliptical galaxies in the mass range
10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS
J0848+4453 at z=1.27. Our aim is to assess whether they have completed their
mass growth at their redshift or significant mass and/or size growth can or
must take place until z=0 in order to understand whether elliptical galaxies of
clusters follow the observed size evolution of passive galaxies. To compare our
data with the local universe we considered the Kormendy relation derived from
the early-type galaxies of a local Coma Cluster reference sample and the WINGS
survey sample. The comparison with the local Kormendy relation shows that the
luminosity evolution due to the aging of the stellar content already assembled
at z=1.27 brings them on the local relation. Moreover, this stellar content
places them on the size-mass relation of the local cluster ellipticals. These
results imply that for a given mass, the stellar mass at z~1.3 is distributed
within these ellipticals according to the same stellar mass profile of local
ellipticals. We find that a pure size evolution, even mild, is ruled out for
our galaxies since it would lead them away from both the Kormendy and the
size-mass relation. If an evolution of the effective radius takes place, this
must be compensated by an increase in the luminosity, hence of the stellar mass
of the galaxies, to keep them on the local relations. We show that to follow
the Kormendy relation, the stellar mass must increase as the effective radius.
However, this mass growth is not sufficient to keep the galaxies on the
size-mass relation for the same variation in effective radius. Thus, if we want
to preserve the Kormendy relation, we fail to satisfy the size-mass relation
and vice versa.Comment: Accepted for publication in A&A, updated to match final journal
versio