421 research outputs found

    VLT/UVES shows no cosmological variability of alpha

    Full text link
    The cosmological variability of alpha is probed from individual observations of pairs of FeII lines. This procedure allows a better control of the systematics and avoids the influence of the spectral shifts due to ionization inhomogeneities in the absorbers and/or non-zero offsets between different exposures. Applied to the FeII lines of the metal absorption systems at zabs = 1.839 in Q1101--264 and at zabs = 1.15 in HE0515--4414 observed by means of UVES at the ESO-VLT, it provides da/a = 0.4 (+/- 1.5 stat)x10^{-6}. The result is shifted with respect to the Keck/HIRES mean da/a = -5.7(+/- 1.1 stat})x10^{-6} (Murphy et al. 2004) at a high confidence level (95%). Full details of this work are given in Levshakov et al (2005)Comment: 3 pages, 1 postscript figur

    Simulating cosmic metal enrichment by the first galaxies

    Get PDF
    We study cosmic metal enrichment via AMR hydrodynamical simulations in a (10 Mpc/h)3^3 volume following the Pop III-Pop II transition and for different Pop III IMFs. We have analyzed the joint evolution of metal enrichment on galactic and intergalactic scales at z=6 and z=4. Galaxies account for <9% of the baryonic mass; the remaining gas resides in the diffuse phases: (a) voids, i.e. regions with extremely low density (Δ\Delta<1), (b) the true intergalactic medium (IGM, 1<Δ\Delta<10) and (c) the circumgalactic medium (CGM, 10<Δ<102.5\Delta<10^{2.5}), the interface between the IGM and galaxies. By z=6 a galactic mass-metallicity relation is established. At z=4, galaxies with a stellar mass M∗=108.5M⊙M_*=10^{8.5}M_\odot show log(O/H)+12=8.19, consistent with observations. The total amount of heavy elements rises from ΩZSFH=1.52 10−6\Omega^{SFH}_Z=1.52\, 10^{-6} at z=6 to 8.05 10−610^{-6} at z=4. Metals in galaxies make up to ~0.89 of such budget at z=6; this fraction increases to ~0.95 at z=4. At z=6 (z=4) the remaining metals are distributed in CGM/IGM/voids with the following mass fractions: 0.06/0.04/0.01 (0.03/0.02/0.01). Analogously to galaxies, at z=4 a density-metallicity (Δ\Delta-Z) relation is in place for the diffuse phases: the IGM/voids have a spatially uniform metallicity, Z~10−3.510^{-3.5}Zsun; in the CGM Z steeply rises with density up to ~10−210^{-2}Zsun. In all diffuse phases a considerable fraction of metals is in a warm/hot (T>104.510^{4.5}K) state. Due to these physical conditions, CIV absorption line experiments can probe only ~2% of the total carbon present in the IGM/CGM; however, metal absorption line spectra are very effective tools to study reionization. Finally, the Pop III star formation history is almost insensitive to the chosen Pop III IMF. Pop III stars are preferentially formed in truly pristine (Z=0) gas pockets, well outside polluted regions created by previous star formation episodes.Comment: 23 pages, 18 figures, 3 tables, Accepted for publication in MNRA

    The lithium isotope ratio in the metal-poor halo star G271-162 from VLT/UVES observations

    Get PDF
    A high resolution (R = 110.000), very high S/N (>600) spectrum of the metal-poor turnoff star G271-162 has been obtained in connection with the commissioning of UVES at VLT/Kueyen. Using both 1D hydrostatic and 3D hydrodynamical model atmospheres, the lithium isotope ratio has been estimated from the LiI 670.8 nm line by means of spectral synthesis. The necessary stellar line broadening (1D: macroturbulence + rotation, 3D: rotation) has been determined from unblended KI, CaI and FeI lines. The 3D line profiles agree very well with the observed profiles, including the characteristic line asymmetries. Both the 1D and 3D analyses reveal a possible detection of 6Li in G271-162, 6Li/7Li = 0.02 +-0.01 (one sigma). It is discussed if the smaller amount of 6Li in G271-162 than in the similar halo star HD84937 could be due to differences in stellar mass and/or metallicity or whether it may reflect an intrinsic scatter of the Li isotope ratio in the ISM at a given metallicity.Comment: 5 pages with 6 figures. Accepted as a letter in A&

    The clustering properties of the Lyman-alpha clouds

    Full text link
    We analyze the clustering properties of a high-resolution (~10 km/s) sample of about 1600 Lyman-alpha lines in the spectra of 15 quasars, obtained in the framework of an ESO key-programme with the addition of literature data. The two-point correlation function in the velocity space shows a significant signal on small velocity scales (Delta v < 300 km/s) with amplitude and significance increasing with increasing column density. The correlation scale at z~3 turns out to be 200 - 300 h_{50}^{-1} kpc. A trend of increasing correlation with decreasing redshift is apparent. The existence of over- and under-densities on scales of a few tens of Megaparsec is confirmed with a high confidence level and a number of possible structures are identified. The present observations are found to be consistent with models of gravitationally induced correlations. A continuity scenario between Lyman-alpha and metal systems emerges, with a suggested physical association between the Lyman-α\alpha clouds with log N_{HI} > 14 and the halos of protogalactic systems.Comment: 9 pages, 5 figures, MNRAS-Latex. Accepted for publication in the Monthly Not. Roy. Astro. So
    • …
    corecore