29 research outputs found

    Gentamicin loaded niosomes against intracellular uropathogenic Escherichia coli strains

    Get PDF
    Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs

    Castel di Sangro-Scontrone field camp – structural and applied geomorphology

    Get PDF
    The Geomorphological Field Camp 2014 in the Castel di Sangro-Scontrone area is the result of geological and geomorphological teaching field work activities carried out in Central Italy by a group of 23 students attending the Structural Geomorphology and Applied Geomorphology courses (Master's Degree in Geological Science and Technology of the Università degli Studi ‘G. d'Annunzio’ Chieti-Pescara, Italy, Department of Engineering and Geology). The Field Camp 2014 was organized in May 2014, following regular classes held during the fall term. General activities for the field camp were developed over four main stages: (1) preliminary analysis of the regional geological and geomorphological setting of the area; (2) preliminary activities for the analysis of the local area (orography, hydrography and photogeology investigations, and geographical information system processing); (3) field work, focused on the analysis of a specific issue concerning structural geomorphology or applied geomorphology (e.g. landscape evolution, river channel change, landslide distribution, and flood hazard); and (4) post-field work production of the map. Finally, the fundamental role of field work in the analysis of landscape and in land management was outlined: indeed, the overall field camp enhanced the crucial role of field-based learning for young geomorphologists in order to acquire a strong sensitivity to geomorphological processes and landscape evolution

    Bored with boredom? Trait boredom predicts internet addiction through the mediating role of attentional bias toward social networks

    No full text
    Internet addiction is an emerging issue, impacting people's psychosocial functioning and well-being. However, the prevalence and the mechanisms underlying internet misuse are largely unknown. As with other behavioral addiction disorders, the increase and persistence of internet addiction may be favored by negative affect such as boredom. In this study, we examined the role of boredom susceptibility, as a personality trait, in predicting the risk of internet addiction. Furthermore, we analyzed the attentional mechanisms that may exacerbate dysfunctional internet behaviors. Specifically, we assessed the mediating role of attentional bias toward social media cues on the relation between boredom susceptibility and internet addiction. Sixty-nine young adults were administered a dot-probe task assessing internet-related attentional bias (AB) and questionnaires measuring internet addiction (IAT) and boredom susceptibility (BS-BSSS). Correlation and t-test analyses confirmed that the tendency to experience boredom and selective attention toward social network information was related to internet addiction. Furthermore, the mediation model indicated that AB fully explains the link between BS-BSSS and IAT. The study highlighted the crucial role of selective attentional processing behind internet addiction. The current results are useful for both researchers and clinicians as they suggest that intervention programs for internet addiction should include strategies to cope with dysfunctional cognitive processes

    Hyperforin down-regulates effector function of activated T lymphocytes and shows efficacy against Th1-triggered CNS inflammatory-demyelinating disease

    No full text
    Hyperforin (Hyp) is an active compound contained in the extract of Hypericum perforatum, well known for its antidepressant activity. However, Hyp has been found to possess several other biological properties, including inhibitory effects on tumor invasion, angiogenesis, and inflammation. In this paper, we show that treatment with Hyp inhibited IFN-gamma production, with down-regulation of T-box (T-bet; marker of Th1 gene expression) and up-regulation of GATA-3 (marker gene of Th2) on IL-2/PHA-activated T cells. In parallel, we showed a strong down-regulation of the chemokine receptor CXCR3 expression on activated T cells. The latter effect and the down-modulation of matrix metalloproteinase 9 expression may eventually lead to the inhibition of migratory capability and matrix traversal toward the chemoattractant CXCL10 by activated lymphocytes that we observed in vitro. The effect of Hyp was thus evaluated on an animal model of experimental allergic encephalomyelitis (EAE), a classic, Th1-mediated autoimmune disease of the CNS, and we observed that Hyp attenuates the severity of the disease symptoms significantly. Together, these properties qualify Hyp as a putative, therapeutic molecule for the treatment of autoimmune inflammatory disease sustained by Th1 cells, including EAE
    corecore