22 research outputs found

    Diagnostic differentiation of mild cognitive impairment due to Alzheimer's disease using a hippocampus-dependent test of spatial memory.

    Get PDF
    The hippocampus is one of the earliest brain regions affected in Alzheimer's disease (AD) and tests of hippocampal function have the potential to detect AD in its earliest stages. Given that the hippocampus is critically involved in allocentric spatial memory, this study applied a short test of spatial memory, the 4 Mountains Test (4MT), to determine whether test performance can differentiate mild cognitive impairment (MCI) patients with and without CSF biomarker evidence of underlying AD and whether the test can distinguish patients with MCI and mild AD dementia when applied in different cultural settings. Healthy controls (HC), patients with MCI, and mild AD dementia were recruited from study sites in UK and Italy. Study numbers were: HC (UK 20, Italy 10), MCI (UK 21, Italy 14), and AD (UK 11, Italy 9). Nineteen UK MCI patients were grouped into CSF biomarker-positive (MCI+, n = 10) and biomarker-negative (MCI-, n = 9) subgroups. Behavioral data were correlated with hippocampal volume and cortical thickness of the precuneus and posterior cingulate gyrus. Spatial memory was impaired in both UK and Italy MCI and AD patients. Test performance additionally differentiated between MCI+ and MCI- subgroups (P = 0.001). A 4MT score of ≤8/15 was associated with 100% sensitivity and 90% specificity for detection of early AD (MCI+ and mild AD dementia) in the UK population, and with 100% sensitivity and 50% specificity for detection of MCI and AD in the Italy sample. 4MT performance correlated with hippocampal volume in the UK population and cortical thickness of the precuneus in both study populations. In conclusion, performance on a hippocampus-sensitive test of spatial memory differentiates MCI due to AD with high diagnostic sensitivity and specificity. The observation that similar diagnostic sensitivity was obtained in two separate study populations, allied to the scalability and usability of the test in community memory clinics, supports future application of the 4MT in the diagnosis of pre-dementia due to AD.Alzheimer's Research UK (D.C.) and Italian Ministry of Health (F.T.

    From brain topography to brain topology: relevance of graph theory to functional neuroscience

    No full text
    Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians

    Table_1_Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.DOC

    No full text
    <p>Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.</p><p>Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.</p><p>Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.</p><p>Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.</p

    Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    No full text
    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery

    Stereotactic electroencephalography in humans reveals multisensory signal in early visual and auditory cortices

    No full text
    Unequivocally demonstrating the presence of multisensory signals at the earliest stages of cortical processing remains challenging in humans. In our study, we relied on the unique spatio-temporal resolution provided by intracranial stereotactic electroencephalographic (SEEG) recordings in patients with drug-resistant epilepsy to characterize the signal extracted from early visual (calcarine and pericalcarine) and auditory (Heschl's gyrus and planum temporale) regions during a simple audio-visual oddball task. We provide evidences that both cross-modal responses (visual responses in auditory cortex or the reverse) and multisensory processing (alteration of the unimodal responses during bimodal stimulation) can be observed in intracranial event-related potentials (iERPs) and in power modulations of oscillatory activity at different temporal scales within the first 150 msec after stimulus onset. The temporal profiles of the iERPs are compatible with the hypothesis that MSI occurs by means of direct pathways linking early visual and auditory regions. Our data indicate, moreover, that MSI mainly relies on modulations of the low-frequency bands (foremost the theta band in the auditory cortex and the alpha band in the visual cortex), suggesting the involvement of feedback pathways between the two sensory regions. Remarkably, we also observed high-gamma power modulations by sounds in the early visual cortex, thus suggesting the presence of neuronal populations involved in auditory processing in the calcarine and pericalcarine region in humans

    Visual behaviors in disorders of consciousness: Disentangling conscious visual processing by a multimodal approach

    No full text
    One of the major challenges for clinicians who treat patients with Disorders of Consciousness (DoCs) concerns the detection of signs of consciousness that distinguish patients in Vegetative State from those in Minimally Conscious State. Recent studies showed how visual responses to tailored stimuli are one of the first evidence revealing that one patient is changing from one state to another. This study aimed to explore the integrity of the neural structures being part of the visual system in patients with DoCs manifesting a reflexive behavior (visual blink) and in those manifesting a cognitively and cortically mediated behavior (visual pursuit). We collected instrumental data using specialized equipment (EEG following the rules of the International 10-20 system, 3T Magnetic Resonance, and Positron Emission Tomography) in 54 DoC patients. Our results indicated that visual pursuit group showed a better fVEPs response than the visual blink group, because of a greater area under the N2/P2 component of fVEPs (AUC could be seen as an indicator of the residual activity of visual areas). Considering neuroimaging data, the main structural differences between groups were found in the retrochiasmatic areas, specifically in the right optic radiation and visual cortex (V1), areas statistically less impaired in patients able to perform a visual pursuit. FDG-PET analysis confirmed difference between groups at the level of the right calcarine cortex and neighboring right lingual gyrus. In conclusion, although there are methodological and theoretical limitations that should be considered, our study suggests a new perspective to consider for a future diagnostic protocol

    Disorder of consciousness: Structural integrity of brain networks for the clinical assessment

    No full text
    Abstract Aim When studying brain networks in patients with Disorders of Consciousness (DoC), it is important to evaluate the structural integrity of networks in addition to their functional activity. Here, we investigated whether structural MRI, together with clinical variables, can be useful for diagnostic purposes and whether a quantitative analysis is feasible in a group of chronic DoC patients. Methods We studied 109 chronic patients with DoC and emerged from DoC with structural MRI: 65 in vegetative state/unresponsive wakefulness state (VS/UWS), 34 in minimally conscious state (MCS), and 10 with severe disability. MRI data were analyzed through qualitative and quantitative approaches. Results The qualitative MRI analysis outperformed the quantitative one, which resulted to be hardly feasible in chronic DoC patients. The results of the qualitative approach showed that the structural integrity of HighOrder networks, altogether, had better diagnostic accuracy than LowOrder networks, particularly when the model included clinical variables (AUC = 0.83). Diagnostic differences between VS/UWS and MCS were stronger in anoxic etiology than vascular and traumatic etiology. MRI data of all LowOrder and HighOrder networks correlated with the clinical score. The integrity of the left hemisphere was associated with a better clinical status. Conclusions Structural integrity of brain networks is sensitive to clinical severity. When patients are chronic, the qualitative analysis of MRI data is indicated
    corecore