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Magnetic Resonance-guided high-intensity Focused Ultrasound (MRgFUS) of the

thalamic ventral intermediate nucleus (Vim) for tremor has increasingly gained interest

as a new non-invasive alternative to standard neurosurgery. Resting state functional

connectivity (rs-FC) correlates of MRgFUS have not been extensively investigated

yet. A region of interest (ROI)-to-ROI rs-FC MRI “connectomic” analysis focusing on

brain regions relevant for tremor was conducted on 15 tremor-dominant patients

with Parkinson’s disease who underwent MRgFUS. We tested whether rs-FC

between tremor-related areas was modulated by MRgFUS at 1 and 3 months post-

operatively, and whether such changes correlated with individual clinical outcomes

assessed by the MDS-UPDRS-III sub items for tremor. Significant increase in FC

was detected within bilateral primary motor (M1) cortices, as well as between

bilateral M1 and crossed primary somatosensory cortices, and also between pallidum

and the dentate nucleus of the untreated hemisphere. Correlation between disease

duration and FC increase at 3 months was found between the putamen of both

cerebral hemispheres and the Lobe VI of both cerebellar hemispheres, as well as

between the Lobe VI of untreated cerebellar hemisphere with bilateral supplementary

motor area (SMA). Drop-points value of MDS-UPDRS at 3 months correlated with

post-treatment decrease in FC, between the anterior cingulate cortex and bilateral

SMA, as well as between the Lobe VI of treated cerebellar hemisphere and the

interpositus nucleus of untreated cerebellum. Tremor improvement at 3 months,

expressed as percentage of intra-subject MDS-UPDRS changes, correlated with FC

decrease between bilateral occipital fusiform gyrus and crossed Lobe VI and Vermis

VI. Good responders (≥50% of baseline tremor improvement) showed reduced FC

between bilateral SMA, between the interpositus nucleus of untreated cerebellum
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and the Lobe VI of treated cerebellum, as well as between the untreated SMA and

the contralateral putamen. Good responders were characterized at baseline by crossed

hypoconnectivity between bilateral putamen and M1, as well as between the putamen

of the treated hemisphere and the contralateral SMA. We conclude that MRgFUS can

effectively modulate brain FC within the tremor network. Such changes are associated

with clinical outcome. The shifting mode of integration among the constituents of this

network is, therefore, susceptible to external redirection despite the chronic nature of PD.

Keywords: MRgFUS (magnetic resonance-guided focused ultrasound surgery), tremor, Parkinson’s disease,

ventral intermediate nucleus (VIM), fMRI, resting state functional connectivity

INTRODUCTION

Patients with Parkinson’s disease (PD) have a marked
heterogeneity in their clinical features in relation to age of
onset, motor presentation/phenotype, neuropsychological
profile, and the rate of progression (1, 2). A large body of
scientific evidence seems to suggest the existence of four main
phenotypes of Parkinson’s disease. In addition to the early-onset
and late-onset subtypes with rapid disease progression, “motor”
subtypes are recognized, particularly the “postural instability and
the gait difficulty-dominant,” as well as the “tremor-dominant”
subtypes (2). Tremor-dominant PD (TD-PD) is classically
characterized by the resting tremor of the limbs, with a common
re-emergent component after holding sustained postures (3).
Tremor affects the quality of life (4). Patients with TD-PD
experience intense embarrassment and difficulties due to their
tremor that limit social interactions and frequently interferes
with their ability to perform the daily living activities and simple
tasks both at home and at work (5). Tremor is primarily managed
with medications, but both response to tremor and satisfaction
with medical therapy are highly variable (5). Moreover, effective
medications can be associated with adverse effects (6–8).

The search for increasingly effective therapies drives to a
better understanding of the pathophysiology of the disorder and
the possible targets for non-pharmacological treatments, such as
surgical lesions or neuromodulation. The actual pathophysiology
of this disabling phenomenon is still partially undetermined, and
the proposed mechanisms are currently under debate. Altered
interactions between the cerebello-thalamo-cortical circuitry and
the basal ganglia are thought to contribute to parkinsonian

Abbreviations: BOLD, Blood oxygenation level dependent; CSF, cerebrospinal

fluid; dPMC, dorsal premotor cortex; DN, dentate nucleus; DRTT, dentato-

rubro-thalamic tract; FC, functional connectivity; FDR, false discovery rate; GM,

gray matter; GR, good responder; IN, interpositus nucleus; Lob, lobule; mAC,

median anterior cingulate; MDS-UPDRS, Movement Disorder Society Unified

Parkinson’s Disease Rating Scale; MNI, Montreal Neurological Institute; MRgFUS,

Magnetic Resonance-guided high-intensity Focused Ultrasound; OFusG, occipital

fusiform gyrus; PaCiG, paracingulate gyrus; PR, poor responder, PreCG, precentral

gyrus; PostCG, postcentral gyrus; ROI, region-of-interest; rs-fMRI, Resting state

functional MRI; T, tesla; SDR, skull density ratio; SPL, superior parietal lobe; SMA,

supplementary motor area; SPM, the Statistical Parametric Mapping; STN, the

subthalamic nucleus; TD-PD, tremor-dominant Parkinson’s disease; Th, thalamus;

TOFusG, temporal-occipital fusiform cortex; TS, treated side; unTS, untreated

side; Ver, cerebellum–vermis subdivisions; Vim, thalamic ventral intermediate

nucleus; vPMC, ventral premotor cortex; WM, white matter.

tremor (9, 10). In addition, dopamine depletion in the globus
pallidus has been historically associated with the severity of
clinical tremor (9). These assumptions are echoed by the recent
“finger-switch-dimmer” hypothesis (11), for which tremor in
PD would be: (i) induced by pathological triggering from the
dopamine-depleted basal ganglia; (ii) generated by changes in
the oscillatory activity within related thalamic nuclei (i.e., from
pallidal to cerebellar thalamic recipients); and (iii) modulated by
the cerebellum. Efferent copies of tremorigenic thalamic activity
would be transmitted to the cerebral sensorimotor cortex, then
it will be fed back into the basal ganglia and also propagated
to the subthalamic nucleus through thalamo-cortical, thalamo-
striatal, cortico-striatal, and cortico-subthalamic pathways (12,
13). Therefore, PD tremor would be mediated by parallel and
only apparently segregated trans-cortical and sub-cortical circuits
converging to the thalamus (14).

Even though none of the above described “circuital
perspectives” is likely to explain definitively how tremor is
generated and propagated in TD-PD and similar disorders, such
as essential tremor (15), tremorigenic disorders would appear
to share a common dysfunctionally distributed tremor-network
centered on the thalamus, specifically on the thalamic ventral
intermediate nucleus (Vim) (16). Vim is the cerebellum-recipient
nucleus of the thalamus and has traditionally been regarded as the
preferred target for neuromodulation or lesional neurosurgery
to obtain tremor relief (17, 18). Growing recent evidences have
shown that effectiveness of interventional procedures for tremor
may be related to the proximity between the actual Vim lesion
and the white matter tracts extending through the Vim, namely
the dentato-rubro-thalamic tract (DRTT) (19–31). Vim ablation
would, therefore, interfere with the tremor-sustaining aberrant
circuitry (32).

In recent years, promising results have been published on
the thalamotomy of the Vim using Magnetic Resonance-guided
high-intensity focused ultrasound (MRgFUS). This is a non-
invasive procedure performed under MRI guidance which allows
to produce a small lesion (i.e., a focal area of coagulative necrosis
induced by heat) at the level of selected target (i.e., the Vim) (33).
This procedure represents an interesting therapeutic option for
parkinsonian tremor that is not responsive to pharmacological
therapy in cases where patients do not want to undergo or
have contraindications to invasive procedures, such as deep
brain stimulation. Subsequently, this technique is increasingly
being employed as both safe and effective symptomatic treatment
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for medication-resistant, long-lasting, and disabling tremor in
patients suffering from TD-PD.

To the best of our knowledge, there are only a few
studies describing functional correlates of Vim ablation, and the
potential mechanisms of connectivity reorganization over time
after lesional procedures on Vim (mainly based on stereotactic
radiosurgical thalamotomy) are yet to be recognized. To date, the
literature on PD only includes at most 10 patients (34–42).

Here, we used resting state functional MRI (rs-fMRI) to
longitudinally explore the dynamics of functional interactions
between different nodes of the above-described “tremor-network”
before and after theMRgFUS Vim ablation in a cohort of patients
with TD-PD (“Main effect” of MRgFUS treatment). In particular,
our goal was to evaluate if the changes in rs-fMRI interactions
were transient and limited over time; for example, occurring only
at 1 month after treatment mainly due to early postoperative
alterations, or if they were still identifiable at 3 months after the
complete postoperative oedema reabsorption.

In addition, we examined whether: (i) disease duration was
related to changes in intra-subject FC between the areas that
are forming part of the tremor-network (“treatment by disease
duration interaction effect”); (ii) post-MRgFUS Vim lesion’s
volume at 24 h influenced the FC changes (“treatment by lesion
volume interaction effect”); (iii) FC changes correlated with
clinical improvement at 3 months after MRgFUS (“treatment by
clinical improvement interaction effect”); (iv) FC changes differed
between clinical outcomes (“treatment by outcome interaction
effect”). Finally, (v) we attempted to retrospectively identify FC
features at baseline that might be predictive of different clinical
outcomes (“pretherapeutic functional profiles of outcomes”).

MATERIALS AND METHODS

We prospectively enrolled 60 consecutive patients with
idiopathic TD-PD [according to clinical diagnostic criteria
for Parkinson’s disease of the Movement Disorder Society:
(43)], with disabling tremor resistant to medication, who were
evaluated at our institution from January 2019 to June 2020.
All patients were carefully evaluated by a neurologist expert
in movement disorders [RE; NGA; SB] and were considered
good candidates for MRgFUS unilateral Vim thalamotomy.
In particular, patients were examined in “off” (at least 12-h
overnight withdrawal of antiparkinsonian therapy) and “on”
conditions (90min after a levodopa loading dose, approximately
equal to 150% of the patients’ usual morning dose) by the part-III
items of the Movement Disorder Society Unified Parkinson’s
Disease Rating Scale [MDS-UPDRS: (44)].

Main inclusion criteria for MRgFUS were: (i) medication-
refractory disabling tremor, defined as “disabling in the main
activities of daily life despite of all available oral treatments” and
confirmed by “acute levodopa challenge response”; (ii) age > 18
years; and (iii) contraindication for deep brain stimulation (DBS)
or patients who refused DBS.

Exclusion criteria were as follows: (i) other neurodegenerative
diseases than PD; (ii) history of prior stereotactic neurosurgery
or DBS; (iii) standard contraindications for MR-imaging

or for MRI contrast agent; (iv) patient/s unable to tolerate
supine position for long time during treatment (4+ h)
or claustrophobia; (v) significant cognitive impairment
documented by neuropsychological evaluation (Mini-Mental
State Examination ≤21); (vi) serious psychiatric pathologies,
active drug/alcohol dependency, or prior abuse; (vii) risk factors
for bleeding, unstable cardiac status, or medical conditions not
allowing anticoagulant/antiplatelet therapy discontinuation;
(viii) history of intracranial hemorrhage or stroke within the
past 6 months; (ix) history of seizures within the past year; (x)
presence of brain tumors; and (xi) a skull density ratio (SDR)
(45) ≤0.34 as calculated from the head computed tomography
screening scan.

Study Design and Outcome Definition
The rs-fMRI data were acquired at baseline (during the screening
stage, not exceeding 4 months before MRgFUS treatment), as
well as at 1 month (1-mo) and 3 months (3-mo) postoperatively.
Clinical assessment was usually performed on the same day
of each MRI examination or, at most, the day before or after.
For this study, the final clinical outcome was defined by the
score variation of the tremor improvement at 3 months (3-
mo) post-treatment, regarding the body side contralateral to the
thalamotomy, and calculated as absolute drop value (score at 3-
mo minus score at baseline of the sub-items 3.15.a, 3.16.a, 3.17.a,
and 3.17.c of the MDS-UPDRS scale in the off-state) (39), and
also, as percentage of intra-subject value (% = baseline minus
3-mo/baseline score x 100) (20). We adopted a clinical and an
rs-MRI evaluation in an off-drug condition because we were
interested in theMRgFUS thalamotomy effect on FC without any
pharmacological influence. Considering a quartile ranking on the
degree of effectiveness (46), improvements of ≥50% compared
to baseline were considered as therapeutic, while those <50% as
sub-therapeutic, further defining two outcome subgroups (good
vs. poor responders, GR vs. PR).

MRI Data Acquisition and Processing
Transcranial MRgFUS Vim-thalamotomy was performed by the
ExAblate 4000 system (InSightec, Haifa, Israel) installed on a 1.5T
MR scanner. Screening and follow-up of fMRI data were acquired
on a 3T scanner equipped with a 32-channel coil (Achieva TX,
Philips Healthcare BV, Best, NL). High resolution volumetric
turbo field echo T1-weighted (TR = 8,200ms; TE = 3,700ms;
flip angle = 8◦; voxel = 1 × 1 × 1mm) and T2-weighted (TR
= 2,500ms; TE = 2,800ms; flip angle = 90◦; voxel = 0.8 ×

0.8 × 0.8mm) images were acquired. The rs-fMRI acquisition
consisted of a repeated gradient-echo planar imaging sequence
(TR = 3,000ms, TE = 30ms, α = 80◦, 2.5mm isotropic voxel
size, matrix size = 90 x 95) providing 47 ascending interleaved
images per volume, parallel to the anterior commissure-posterior
commissure (AC–PC) line and covering the whole brain.

Importantly, the patient habitual pharmacological treatment
for tremor was discontinued at least 12 h before the MRI
scanning session.

The rs-fMRI data preprocessing and analysis were performed
using the Statistical Parametric Mapping (SPM12, http://www.
fil.ion.ucl.ac.uk/spm), and the CONN toolbox (release 19.c) (47)
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running on MATLAB R2019b (MathWorks, Natick, MA, USA).
Scans of patients with right thalamotomy were preliminary
flipped so that treatments were all conventionally considered
on the left hemisphere. Therefore, we could define a treated
side (TS) for the whole study sample, corresponding to the left
cerebral hemisphere with contralateral (right) cerebellum, as well
as the untreated side (unTS), corresponding to the right cerebral
hemisphere with contralateral (left) cerebellum. Functional
images were realigned, unwrapped, and slice-time corrected.
Gray-matter (GM), white-matter (WM), and cerebrospinal
fluid (CSF) were automatically segmented, and the functional
data were normalized to the Montreal Neurological Institute
(MNI) template. Data were spatially smoothed with a Gaussian
kernel set at 6mm full width at half maximum. The first five
principal components fromWM and CSF signals, the six motion
realignment parameters, and their first-order derivatives, as
well as the outlier volumes were detected using the ART-based
scrubbing method (48) as implemented in CONN, and were
regressed out of the signal. Subjects with excessive head motion
in one of the 3 follow-up scans (i.e., ≥50% of volumes detected
as outliers) were excluded from further analysis. Accepted
data were then band-pass filtered (0.008 to 0.1Hz) and were
linearly detrended.

Resting-state functional connectivity was tested with region-
to-region (“connectomic”) analysis. Most region-of-interest
(ROI) masks were already in the probabilistic Harvard-Oxford
(49) and AAL (50) atlases included in the CONN toolbox.
We chose ROIs potential relevance for tremor pathogenesis
according to existing literature [in particular see (36)]: precentral
(PreCG) and postcentral (PostCG) gyrus; supplementary motor
area (SMA); paracingulate gyrus (PaCiG); and median anterior
cingulate (mAC), covering the most caudal part of pre-
supplementary motor area, as well as the cingulate motor areas;
inferior and middle frontal gyrus, encompassing the ventral and
dorsal premotor cortex (vPMC and dPMC); superior parietal
lobe (SPL); temporal-occipital fusiform cortex (TOFusG); and
occipital fusiform gyrus (OFusG) [in particular see (36)];
putamen; pallidum; and all cerebellar lobules (Lob), including
vermian subdivisions (Ver). Additional ROI in the thalamus
(Th) was initially defined based on patient’s lesions and then
imported in CONN toolbox; in details, individual MRgFUS
thalamic lesions were semi-automatically outlined on the 24-h
post-treatment volumetric T2-w images (or, when not available,
post-contrast T1-w images) using the ITK-Snap software. Only
voxels that were rated by two independent expert observers
[MS; GD], as belonging to zones I and II of a particular
lesion, were included in the final lesion mask, while the
surrounding vasogenic oedema (zone III) (33) was excluded.
Lesion masks were normalized to MNI in SPM, and then,
were averaged across subjects to create a group thalamic ROI,
encompassing all the post-operative Vim (TS Th-Vim). The
flipped contralateral ROI was set as the unTS Th-Vim. Moreover,
segmented thalamic lesion masks were used to extract individual
lesion volumes for further correlation analysis. The masks for
deep cerebellar nuclei, dentate nucleus (DN), and interpositus
nucleus (IN), were taken from the SPM neuroanatomy toolbox
(51) and were imported in the CONN toolbox. All ROIs

were thresholded to contain only voxels that were inside each
ROI with a probability threshold above 60% (52). Notably,
when extracting ROI-level BOLD signal, we opted to use
the unsmoothed images to further avoid signal contamination
from neighboring voxels of other proximal regions, which was
especially important in using cerebellar ROIs that are very close
to each other (53).

The ROI-to-ROI analyses consisted of the following steps.
Each subject’s first-level Fisher-Z transformed connectivity
matrices (expressing pairwise correlations between the BOLD
time series of each pair of ROIs) were subjected to a second-
level within-group and within-subject analysis of variance,
testing for FC differences across the three-time points (main
contrast analysis, corresponding to the “main effect of treatment”:
baseline vs. 1-mo vs. 3-mo). In this first analysis, the age
and duration of disease were considered as a covariate of
no interest to minimize their potential influences. Next, the
disease duration, the 24-h individual lesion volume (mm3),
the individual absolute drop points, as well as the % value
of tremor improvement at 3-mo were separately fed into a
regression model against the main contrast (baseline vs. 1-mo
vs. 3-mo) to assess their impact on FC changes (respectively:
“treatment by disease duration,” “treatment by lesion volume,” and
“treatment by clinical improvement”–interaction effects). Then,
a between-subject analysis comparing good vs. poor responders
(GR vs. PR) was performed both across the three time points
(“treatment by outcome interaction effect”), and only at baseline
(“pretherapeutic functional profiles of outcomes”). All results were
corrected at cluster-level by parametric multivariate statistics
(cluster-level inferences, functional network connectivity-FNC)
(54); with connection threshold set at p < 0.1 uncorrected,
and cluster threshold set at p < 0.05 false discovery rate
(FDR) corrected (multi-voxel pattern analysis omnibus test).
Statistics outside the CONN toolbox were performed using
the OriginPro 2015 (Origin Lab Corporation, Northampton,
MA, USA).

RESULTS

Final Sample Definition
Of the initial 60 patients with TD-PD, 20 subjects were found
to be eligible for MRgFUS and were admitted to the fMRI
longitudinal study. All patients successfully completed the
MRgFUS Vim ablation. Four patients did not complete the rs-
fMRI follow-up. One patient who completed the rs-fMRI follow-
up was excluded from the group-analysis because of excessive
head movement, thus, leaving 15 TD-PD in the final study
sample. The demographics of the patients, including age, gender,
disease duration, side of thalamotomy, and the 1-mo and 3-
mo post-treatment tremor improvement for the treated body
side relative to baseline, as well as 24-h lesion volumes, are
summarized in Table 1.

By the 3-mo follow-up of neurological examination, the group
of patients were divided based on tremor improvement in: PD-
GR (n = 8), who differed significantly from PD-PR (n = 7) (t
= 5.5, p < 0.001; 69.12 vs. 29.57%). The age, disease duration,
and 24-h lesion volumes did not significantly differ between
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TABLE 1 | Demographic and clinical data of patients with Parkinson’s disease with information on 1-mo and 3-mo post-treatment tremor improvement for the treated body side relative to baseline, as well as 24-h

lesion volumes.

Age (yrs) Sex Disease

duration (yrs)

Tx side 24 h Tremor score for

treated body side

Drop points (-) Percentage (%)

improvement

Drop points (-) Percentage (%)

improvement

Lesion vol (mm3) At baseline* 1-mo–baseline At 1-mo 3-mo–baseline At 3-mo

PD 1 60 M 3 L 241 5 −3 60 −3 60

PD 2 71 M 19 R 280 5 −3 60 −4 80

PD 3 68 M 12 R 159 7 −3 43 −6 86

PD 4 77 M 10 L 456 7 −3 43 −6 86

PD 5 55 M 8 L 318 9 −6 67 −6 67

PD 6 63 M 4 R 337 6 −4 67 −3 50

PD 7 58 M 3 R 117 7 −5 71 −4 57

PD 8 61 F 5 R 230 7 −2 67 −2 67

PD 9 57 M 2 R 179 7 −1 14 −2 29

PD 10 68 M 19 L 380 11 −8 73 −4 36

PD 11 65 F 4 R 216 7 −2 29 −2 29

PD 12 61 M 1 L 392 6 −1 17 −2 33

PD 13 74 M 4 R 287 10 −4 40 −4 40

PD 14 53 M 4 R 231 10 0 0 0 0

PD 15 73 M 5 R 256 5 −2 40 −2 40

Mean 64 6.8 272 7.2 −3.1 46 −3.3 50.6

(±SD; range) (±7; 53–77) (±6; 1–19) (±92.5; 117–456) (±1.9; 5–11) [±2.1; (-) 8–0] (±23; 0–73) [±1.7; (-) 6–0] (±24.3; 0–86)

*Scores are referred to tremor sub-items (3.15.a, 3.16.a, 3.17.a, and 3.17.c) of the MDS-UPDRS motor part in off-drug. Yrs, years; Tx, treated; vol, volume; M, male; F, female; L, left; R, right; 1-mo, 1 month after MRgFUS; 3-mo, 3

months after MRgFUS.
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TABLE 2 | Demographic and clinical data of GR- and PR- patients.

GR-PD PR-PD GR-PD vs.

PR-PD (unpaired

t-test)

Age (ysr) 64.13 ± 7.34 64.43 ± 7.34 t = 0.0771

P = 0.9397Sex (male/female) 7/1 6/1

Disease duration (yrs) 8.00 ± 5.55 5.57 ± 6.08 t = 0.8097

P = 0.4333TX side (L/R) 3/5 2/5

24 h

(lesion vol mm3 )

267.25 ±

106.64

277.29 ±

81.48

t = 0.2023

P = 0.8428

Tremor score for

treated body side

(baseline)

6.63 ± 1.30 8.00 ± 2.31 t = 1.4462

P = 0.1718

Drop points (-):

1 mo–baseline

−3.63 ± 1.30 −2.57 ± 2.70 t = 0.9844

P = 0.3429

Percentage (%)

improvement (1 mo)

59.75 ± 10.99 30.43 ±

23.71

t = 3.1448

P = 0.0077

Drop points (-):

3 mo – baseline

−4.25 ± 1.58 −2.29 ± 1.38 t = 2.5443

P = 0.0245

Percentage (%)

improvement

(3 mo)

69.13 ± 13.59 29.57 ±

13.82

t = 5.5800

P = 0.0001

All values are expressed as Mean ± SD. significant results are highlighted in bold.

the (Good Responder) GR and the (Poor Responder) PR (see
Table 2).

Main Effect of MRgFUS Treatment
A significant FC increase at 1-mo and 3-mo (as compared to
baseline) was detected between: TS PreCG and unTS PreCG; TS
PreCG and TS PostCG; unTS PreCG and TS PostCG; and unTS
pallidum and unTS DN (Figure 1). No significant FC differences
in any pair of connections were detected between post-treatment
conditions (i.e., 1-mo vs. 3-mo).

Treatment by Disease Duration Interaction
Effect
Significant correlations between disease duration and FC increase
at 3-mo (as compared to baseline and 1-mo) were found between:
unTS putamen and both TS, unTS Lob VI; TS putamen and both
TS, unTS Lob VI; and both TS, unTS SMA and unTS Lob VI
(Figure 2).

Treatment by Lesion Volume Interaction
Effect
No significant interaction effects were found between 24-h lesion
volumes and post-treatment FC changes.

Treatment by Clinical Improvement
Interaction Effect
Significant correlations between the tremor improvement at 3-
mo (expressed as drop score value) and the FC decrease in
post-treatment (at 1-mo and 3-mo as compared to baseline)
were found between mAC with TS, unTS SMA; and TS Lob
VI and unTS IN (Figure 3A). Significant correlations between
the tremor improvement at 3-mo (expressed as % intra-subject

value) and the FC decrease in post-treatment (at 1-mo and 3-mo
as compared to baseline) were found between: TS OFusG and
unTS Lob VI, Ver VI; and unTS OFusG and unTS Lob VI, Ver
VI (Figure 3B). When comparing post-treatment conditions (1-
mo vs. 3-mo), no significant correlations were found between the
measures of tremor improvement and the changes in FC.

Treatment by Outcome Interaction Effect
Good Responder-Parkinson’s Disease (GR-PD) showed a
significantly reduced post-treatment FC (as compared to PR-
PD) between: unTS and TS SMA; unTS IN and TS Lob VI.
Conversely, they showed significantly increased FC between
unTS SMA and TS putamen (Figure 4). The poor responders
(PR) did not exhibit post-treatment FC changes in any pair of
the ROIs connections.

Pretherapeutic FC Profiles of Outcomes
At baseline, the GR-PD showed significant hypoconnectivity (as
compared to PR-PD) between: TS putamen and both TS and
unTS PreCG; TS putamen and unTS SMA; and unTS putamen
and both TS and unTS PreCG (Figure 5).

DISCUSSION

The Magnetic Resonance-guided high-intensity Focused
Ultrasound (MRgFUS) is a new non-invasive neurosurgical
procedure for improving parkinsonian tremor (55–57). It has
been demonstrated to be safe and effective, at least not inferior
to unilateral DBS (58), thus, providing clinicians with the choice
for different options for a more appropriate intervention based
on the features of the individual patients. The procedure is fully
executed in the MRI setting, which allows real-time monitoring
of the location and size of the lesion. Moreover, clinical effect,
as well as any potential adverse event, can be promptly assessed.
This aspect differentiates the MRgFUS from surgical lesional
thalamotomy or radiotherapy. However, as the MRgFUS is a
relatively recent technique, follow-up data and randomized
clinical trials are quite limited (56).

There is only one report investigating the impact of MRgFUS
Vim thalamotomy on the neuronal activity in a whole-brain level
(42). In particular, the authors measured fractional amplitude
of low-frequency fluctuations (fALFF) on nine medication-
refractory of patients with TD-PD, finding significant changes
in visual areas at 12 months after the treatment compared
to baseline (42). On a different note, in our study, we
assessed the effect on the brain FC of unilateral MRgFUS
thalamotomy according to the commonly accepted pathogenic
structure functional hypothesis of tremor, which is based on
the cerebello-thalamo-cortical circuitries converging on the Vim.
We conducted a hypothesis-driven ROI-to-ROI rs-fMRI analysis,
exclusively focusing on tremor-related brain areas, to accomplish
a “single network”-based description (59) of medium-term effects
(i.e., at 1 and 3 months postoperatively) of the MRgFUS
treatment. Therefore, this is the first study to explore the rs-
FC changes after the MRgFUS selective thalamotomy adopting a
“classic” ROI-based approach. Previous studies have investigated
longitudinal MRgFUS modulation of both the topological brain
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FIGURE 1 | “Main effect” of MRgFUS treatment. The 3D brain rendering and circle connectome graph illustrate statistically significant results. Statistics between each

pair of regions of interest (ROI) are detailed within the table and by the corresponding bar plot; IC, Interconnectivity.

networks properties and the effective connectivity by employing
graph analysis (34) or spectral dynamic causal modeling (35) only
in an ET population. Of note, all the previous works included
have no more than 10 patients in their study sample, while we
could achieve a larger sample of 15 TD-PD subjects.

We would like to emphasize that the investigation of the FC
changes after MRgFUS for tremor offers a unique opportunity to
identify the neural correlates of this symptom quite univocally,
by dissociating it from the overall disease phenotype on a lesional
(iatrogenic) basis. Although the MRgFUS effects are immediate,
an extended time for the clinical follow-up has been arranged to
observe the enduring FC changes associated with the sustained
tremor relief, rather than with transient clinical effects that
were potentially induced by vasogenic oedema surrounding the
lesion (33).

We found that the rs-FC, between tremor-related brain areas,
was effectively modulated by MRgFUS. Selective Vim lesion had
remote effects, modifying the balance of FC between ROIs far
from the site of the lesion. Therefore, we believe that the “whole”
tremor-network should be considered as the ultimate target of
MRgFUS thalamotomy in PD (59).

The FC increase between TS and unTS PreCG; TS PreCG
and unTS PostCG; and unTS PreCG and TS PostCG was
one of the main effects of the treatment. It may reflect
interhemispheric reorganization within bilateral primary motor
(M1) cortices, as well as between bilateral M1 with crossed
primary somatosensory (S1) cortices, with a probable enhanced
synchronicity in homotopic brain regions underlying coherent
sensorimotor behavior. The importance of integrating and
cooperating bilateral sensorimotor systems for appropriate
motor performance has been highlighted in healthy subjects
(60), as well as in post-stroke patients (61). However, the
interhemispheric coordination in PD is still under investigation,
with little shreds of evidence showing an inverse relationship
between the degree of motor impairment and the functional
coordination in sensorimotor regions (62), along with optimal
interhemispheric neural synchronization of motor cortices after
DBS (63). We found that tremor suppression after MRgFUS in
patients with TD-PD was paralleled by a greater synchronization
of intra-cortical sensorimotor functions. A remodulation of
pathological cortico-strial and/or cortico-thalamic interactions
caused by Vim ablation could explain this phenomenon. We
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FIGURE 2 | “Treatment by disease duration” interaction effect. 3D brain rendering and circle connectome graph illustrate statistical significant results of functional

connectivity (FC) changes. Statistics between each pairs of ROI are detailed within the table and by the corresponding bar plot; IC, interconnectivity.

could suppose that the MRgFUS thalamotomy was able to shift
the system toward a more segregated functional state (64).

Another main effect of thalamotomy in PD was the increased
FC between TS DN and unTS pallidum. Interactions between
the cerebellum and the basal ganglia have been traditionally
interpreted as indirectly occurring, via discrete multi-synaptic
loops, primarily at the level of the cerebral cortex (65).
However, recent research in primates using viral tracers
has demonstrated bidirectional, disynaptic, and subcortical
communication between the basal ganglia and the DN via the
thalamus (66, 67). Our finding of an enhanced FC between an
output stage of cerebellar processing (i.e., the DN), with an
in-line station of basal ganglia processing (i.e., the pallidum),
supports the existence of direct and reciprocal influences
between these subcortical structures. Indeed, basal ganglia and
cerebellum work synergistically to produce an efficient motor
functioning, being both implicated in reinforcement learning,

motor planning, and action understanding, as well as in
sensorimotor prediction and control (68). Notwithstanding, the
altered activity in cerebellar pathways has only recently been
recognized as potentially important in PD tremorigenesis (69).
The currently prevailing views emphasize that the cerebellar
node of the tremor circuit (i.e., “the dimmer”) drives the
tremor by manipulating its amplitude (11). Ma et al. (70)
reported a higher dentato-cerebellar FC in TD-PD, interpreted
as a compensatory mechanism overcoming the basal ganglia
impairment, but ultimately favoring the tremor onset. By
contrast, Liu et al. (71) found lower FC between the DN
and the posterior cerebellum in TD-PD. Our finding of an
increased dentate-pallidal FC, associated with a tremor relapse
improvement after Vim thalamotomy, might suggest a pre-
surgical thalamic interference between these two structures
with increasing connectivity after treatment, according to Liu’s
hypothesis. Vim interference could result in their functional
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FIGURE 3 | “Treatment by clinical improvement” interaction effect. (A) shows significant correlations between FC changes and tremor improvement at 3-mo,

expressed as 3 months “absolute drop points” of MDS-UPDRS sub-items for tremor (3.15.a, 3.16.a, 3.17.a, and 3.17.c). (B) shows significant correlations between

FC changes and tremor improvement at 3-mo, expressed as intra-subject “percentage of improvement.” The 3D brain rendering and circle connectome graph

illustrate statistically significant results. Statistics between each pair of ROI are detailed within the table and by the corresponding bar plot; IC, Interconnectivity.
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FIGURE 4 | “Treatment by outcome” interaction effect. Within-subject longitudinal changes of FC selectively associated with the clinical outcome (good vs. poor

response to treatment) are shown. The 3D brain rendering and circle connectomic graph illustrate statistically significant results. Statistics between each pair of ROI

are detailed within the table and by the corresponding bar plot; IC, Interconnectivity.

uncoupling, in terms of delay, asynchrony, or excessive local
synchrony, causing a tremor-prone instability.

We also showed that the thalamotomy-induced FC increased
between bilateral Lob VI of cerebellum with bilateral putamen
and SMA. These effects correlated with a longer disease
duration and were delayed, occurring only at 3-mo after
the procedure. They were also distributed, involving both
hemispheres regardless of treatment side. The Lob VI is
associated with primary sensorimotor body representation in
the cerebellum (72), has strong functional connections with
premotor cortex (i.e. the SMA) (73), and plays a role in the

temporal control of action sequences, as well as in sensorimotor
processing of errors prediction (74). Functional impairment of
the SMA is associated with the pathophysiology of PD, as it is
directly implicated in motor planning (75). The SMA and the
putamen are mutually connected and constitute the “readiness
potential” of self-initiated actions, which is typically less
prominent in PD (76). The post-treatment increase in functional
synchrony between the SMA, putamen, and Lob VI would
indicate a gain of function in this multicomponent cognitive-
motor system, composed of discrete processes, occurring
simultaneously, and aimed at effective motor performance.
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FIGURE 5 | “Pretherapeutic functional profiles of outcomes.” Retrospectively identified baseline FC features associated with different clinical outcome (good vs. poor

response to treatment). The 3D brain rendering and circle connectomic graph illustrate statistically significant results. Statistics between each pair of ROI are detailed

within the table and by the corresponding bar plot; IC, Interconnectivity.

The central role played by the altered patterns of FC,
involving the SMA, putamen, and Lob VI, also emerged from
other findings.

First, the clinical improvement on the treated body-
side (expressed as 3-mo drop points at the MDS-UPDRS
tremor sub items) was associated with decreased FC between
bilateral SMA and mAC. The mAC is part of the so-
called “cingulate motor areas” (77), which, in turn, belongs
to the wider “supplementary motor complex” of the medial
prefrontal cortex. Similar to the proximal pre-SMA, these areas
contribute to second-order aspects of motor function (78–
80).We couldn’t topographically disentangle the involvement

of the different cingulate motor areas along their rostro-
caudal axis (77) due to inherent methodological limitations.
This would have allowed a more accurate definition of the
role of the mAC in the PD tremor. We can only suppose
that Vim ablation induced functional reorganization within
the supplementary motor complex, particularly between the
anterior cingulate and the bilateral SMA, and that this effect,
among others, best reflected the patient’s clinical improvement.
Speculatively, we could assume the presence of a previous
aberrant functional recruitment among premotor areas of both
the medial hemispheric was potentially related to tremor.
However, we cannot definitively determine whether this
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mechanism was pathological in nature, or rather represented a
maladaptive chronic process (8, 81).

Second, MRgFUS resulted in a significant increase of FC
between unTS SMA and TS putamen only in good responders,
who were also retrospectively characterized at baseline by
reduced FC between these two areas–unlike poor responders who
were not.

This pre-treatment hypoconnectivity pattern could be
considered a potential FC predictor of MRgFUS response. Since
the two prognostic sub-groups were not clinically different
at baseline, such FC feature did not correspond to more
severe symptoms. We could therefore hypothesize that either
clinical and corresponding functional phenotypes matched
quite inaccurately in our sample, or the observed functional
feature reflected a greater susceptibility to thalamotomy efficacy.
This latter hypothesis may rely on a greater predisposition
to pathological functional decoupling between the SMA
and the putamen. Perhaps, this predisposition may also
occur on a structural basis, which needs to be addressed
in future works. We should, however, emphasize that
the proposed “decoupled” functional status of the SMA-
putamen connection is an indirect inference of our “ablative
iatrogenic study model.” In fact, the tremor relief after the
FC increase between these two nodes does not necessarily
demonstrate restoration of a specific circuit but could,
eventually, simply implicate iatrogenic interference within
a complex maladaptive loop on which the other remote masked
amplifying mechanisms can chronically act upon. Hence, we
cannot definitively determine whether the interaction between
the two nodes works; causing, sharing, or simply mediating
tremor mechanisms.

Nonetheless, our result underlines the importance of
the “putamen-SMA” connection in the pathogenesis of
TD-PD. Previous observations were quite inconsistent as
to whether PD is characterized by stronger or by weaker
putamen-SMA FC, compared with healthy subjects. For
example, Wu et al. (82) reported a reduced FC, whereas
Kwak et al. (83) and Yu et al. (84) reported an enhanced FC.
Furthermore, none of these studies specifically accounted
for tremor. The present findings support a critical role of
putamen-SMA interaction in TD-PD by showing that a
better response to treatment paralleled the reorganization
of their connectivity, which consisted of an increased
cross-functional coupling. In this context, the concomitant
post-treatment decrease in inter-hemispheric connectivity
between the SMA on both sides should be interpreted as a
complementary regulation, perhaps, even reflecting reallocation
of functional resources.

Third, good responders retrospectively exhibited limited
pre-treatment connectivity between TS, unTS putamen, with
both ipsilateral and contralateral PreCG. These results further
corroborate the evidence that patterns of altered connectivity
in the cortico-striatal loop in TD-PD primarily involves
M1 (85, 86), the most critical area in motor execution.
Notably, our results are in accordance with previous studies
showing a reduced rs-FC between M1 and putamen in
PD (87, 88). One might assume that such FC feature

might correlate with the clinical picture of tremor before
treatment. However, this feature did not correspond to
more severe symptoms in our sample, since good and poor
responders did not differ in tremor severity at baseline (see
Table 2). We could, therefore, hypothesize that the clinical
and the corresponding functional phenotypes do not always
match accurately.

Fourth, we found that tremor improvement was also
associated with post-treatment decrease of FC between the unTS
Lob VI/Ver VI of cerebellum and the bilateral OFusG. These FC
changes were correlated with clinical improvement of tremor.
In line with Xiong et al. (42) we observed the involvement
of the second-order, functionally highly-specialized, visual area
in the pathogenesis of tremor in PD. Also, such contribution
was already evidenced in ET (37, 40, 41, 89). Our finding of
a reduced interaction between specific subareas of the occipital
lobe and the cerebellar hemisphere supports the evidence that
the remote influence between structurally segregated regions
with distinct functional profiles may exist even in the absence
of direct anatomical projections, through indirect polysynaptic
pathways of connection (41, 90). Although the precise function
of the OFusG has not been fully revealed yet, it has been
implicated in high-level visual processing, such as categorical
recognition of visual stimuli (91, 92), and in those processes
characterized by high recurrence of perceptual ambiguity (93).
It is noteworthy that the PD motor performance is prone to
deterioration with increasing ambiguous visual stimuli. This
may be due to the peculiar dysfunction of cerebellar forward
models used to mitigate the effect of sensory uncertainty on
motor performance (94), which would make patients with
PD particularly sensitive to visual feedback (95). Therefore,
a compensatory pre-treatment increase of FC between the
OFusG and the Lob VI/Ver VI of cerebellum–areas that are
preferentially activated in the visual guidance of complex limb
movement (96)–could be plausible. Conversely, the fact that the
greater tremor relief paralleled the reduced FC between these
areas would suggest an adaptive and reversible nature of this
functional coupling.

Finally, a reduction in good responders between TS Lob
VI and unTS IN was observed, following MRgFUS. This effect
correlated with clinical improvement (expressed as absolute value
of drop in MDS-UPDRS III sum score for contralateral tremor
sub items). This finding supports the hypothesis that the tremor
in PD would be associated with an increased activity within
the cerebellum (97). The IN is part of the olivo-cortico-nuclear
kinematic microcircuit, which is responsible for appropriate
timing signals for movement coordination during ongoingmotor
performance. It also participates in the development of internal
models for dynamic motor regulation in response to the external
environment (98). The finding of the reduced FC between Lob
VI and IN in patients who relieved more would suggest possible
remodulation of intra-cerebellar functional resources associated
with effective treatment.

Limitations
Some limitations need to be mentioned. First, the small sample
size (n = 15) may have limited statistical power to identify
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a less robust effect. This could eventually explain the absence
of results in poor responders. Otherwise, it could suggest that
ineffective treatments did not determine appreciable FC changes,
as well as that characteristic pre-therapeutic profiles might not
be recognizable in poor responders. We look forward to multi-
center studies sharing data from advanced imaging techniques,
which would allow for a wider patient recruitment and longer
follow-up with, consequently, more robust results.

Second, although patients were always examined in a
pharmacological washout, we cannot rule out the prolonged
effect of chronic therapy on brain FC (99). It would be advisable
for future studies to explore potential FC changes induced by Vim
thalamotomy in PD, while controlling for “off” and “on” states.
We are currently proceeding toward this purpose.

Third, the interhemispheric connections via the corpus
callosum explain quite exhaustively the “crossed” pattern
of many of our results between cerebral hemispheres.
However, the presence of “uncrossed” functional interactions
between supratentorial structures and cerebellum might be
not immediately justifiable. We suggest that they may be
explained either anatomically–by the presence of the non-
decussating cerebellar pathways (100)–or functionally–by the
intrinsic nature of endogenous BOLD signal fluctuations,
which reflect the spontaneous correlation between distant
brain regions as long as they are, somehow, functionally
related (101).

Fourth, the rs-FC is a correlational technique, expressing
temporal synchrony among BOLD fluctuations at rest
between different couple of ROIs. Our analysis is solely
correlational. Therefore, we did not provide information
about the directed causal influences among involved brain
regions (the so-called “effective connectivity”), nor could
rule out moderation-mediation effects due to third parts (the
so-called “partial correlation” analysis). We can interpret
our network-based description of FC changes following
MRgFUS only in terms of re-modulation and spatial re-
allocation of functional resources. Moreover, we cannot
definitively determine if these effects were reactive rather than
causative, nor if they corresponded to the restoration of a
“normal old function” or to a “treatment specific signature”
superimposed on maladaptive adjustments of a chronically
disrupted system.

Last, we found no association between the 24-h MRgFUS
lesion volume and clinically relevant post-treatment FC changes.
Previous radiological studies on MRgFUS (mainly based on
morphological data) suffer from some inconsistency, with most
authors reporting fewer symptom recurrences with larger lesions
(46, 102–106), while others were focusingmore on lesion location
(20, 107) or topography (27, 108–110), rather than the lesion
volume. Indeed, we observed some heterogeneity in the size and
shape of Vim lesions in our sample, whereas lesion volumes
did not differ significantly between GR and PR. Therefore, the
absence of a correlation between FC changes and the lesion
volumes did not particularly surprise us. Future studies on larger
samples of patients need to investigate potential interference
of lesion volume on FC, which may not have emerged in
our study.

Conclusions
We demonstrated for the first time with a ROI-to-ROI
connectomic approach how MRgFUS VIM thalamotomy
modulates rs-FC of the tremor network in patients with TD-PD.
We showed that treatment-mediated changes of FC between
specific sub-regions of this diffuse network correlated with
the tremor clinical improvement. Taken together, our results
demonstrated a shifting mode of cooperation among the
constituents of the tremor network that is susceptible to external
redirection despite the chronic nature of disease. Finally, we
identified the pre-surgical FC interactions that are potentially
associated with greater tremor improvement after thalamotomy,
suggesting their possible “predictive” use. Future studies in larger
samples of PD subjects are mandatory to validate the utility
of rs-FC as a quantifiable biomarker of tremor improvement
after MRgFUS.
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