87 research outputs found

    Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture

    Full text link
    We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schr\"odinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.Comment: 4 pages, 4 figure

    P. FARNÉS SCHERER, Construir y adaptar las Iglesias. Orientaciones y sugerencias prácticas sobre el espacio celebrativo, según el espíritu del Concilio Vaticano II, Ed. Regina, Barcelona 1989, 272 pp., 13 x 19,5. [RECENSIÓN]

    Get PDF
    We study the growth of two- and three-body correlations in an ultracold Bose gas quenched to unitarity. This is encoded in the dynamics of the two- and three-body contacts analyzed in this work. Via a set of relations connecting many-body correlations dynamics with few-body models, signatures of the Efimov effect are mapped out as a function of evolution time at unitarity over a range of atomic densities nn. For the thermal resonantly interacting Bose gas, we find that atom-bunching leads to an enhanced growth of few-body correlations. These atom-bunching effects also highlight the interplay between few-body correlations that occurs before genuine many-body effects enter on Fermi timescales

    Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Full text link
    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.Comment: Conference Proceeding ICPEAC 2009 Kalamazoo, to appear in Journal of Physics: Conference Serie

    Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Full text link
    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.Comment: Conference Proceeding ICPEAC 2009 Kalamazoo, to appear in Journal of Physics: Conference Serie

    Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Full text link
    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.Comment: Conference Proceeding ICPEAC 2009 Kalamazoo, to appear in Journal of Physics: Conference Serie

    Density profiles and density oscillations of an interacting three-component normal Fermi gas

    Full text link
    We use a semiclassical approximation to investigate density variations and dipole oscillations of an interacting three-component normal Fermi gas in a harmonic trap. We consider both attractive and repulsive interactions between different pairs of fermions and study the effect of population imbalance on densities. We find that the density profiles significantly deviate from those of non-interacting profiles and extremely sensitive to interactions and population imbalance. Unlike for a two-component Fermi system, we find density imbalance even for balanced populations. For some range of parameters, one component completely repels from the trap center giving rise a donut shape density profile. Further, we find that the in-phase dipole oscillation frequency is consistent with Kohn's theorem and other two dipole mode frequencies are strongly effected by the interactions and the number of atoms in the harmonic trap.Comment: Total seven pages with five figures. Published versio

    Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas

    Get PDF
    We study the growth of two- and three-body correlations in an ultracold Bose gas quenched to unitarity. This is encoded in the dynamics of the two- and three-body contacts analyzed in this work. Via a set of relations connecting many-body correlations dynamics with few-body models, signatures of the Efimov effect are mapped out as a function of evolution time at unitarity over a range of atomic densities nn. For the thermal resonantly interacting Bose gas, we find that atom-bunching leads to an enhanced growth of few-body correlations. These atom-bunching effects also highlight the interplay between few-body correlations that occurs before genuine many-body effects enter on Fermi timescales

    Evidence for Efimov quantum states in an ultracold gas of cesium atoms

    Full text link
    Systems of three interacting particles are notorious for their complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of cesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.Comment: 18 pages, 3 figure
    • …
    corecore