5 research outputs found
IFN-γ Priming Effects on the Maintenance of Effector Memory CD4(+) T Cells and on Phagocyte Function: Evidences from Infectious Diseases.
Although it has been established that effector memory CD4(+) T cells play an important role in the protective immunity against chronic infections, little is known about the exact mechanisms responsible for their functioning and maintenance, as well as their effects on innate immune cells. Here we review recent data on the role of IFN-γ priming as a mechanism affecting both innate immune cells and effector memory CD4(+) T cells. Suboptimal concentrations of IFN-γ are seemingly crucial for the optimization of innate immune cell functions (including phagocytosis and destruction of reminiscent pathogens), as well as for the survival and functioning of effector memory CD4(+) T cells. Thus, IFN-γ priming can thus be considered an important bridge between innate and adaptive immunity
IL-1α promotes liver inflammation and necrosis during blood-stage Plasmodium chabaudi malaria.
Malaria causes hepatic inflammation and damage, which contribute to disease severity. The pro-inflammatory cytokine interleukin (IL)-1α is released by non-hematopoietic or hematopoietic cells during liver injury. This study established the role of IL-1α in the liver pathology caused by blood-stage P. chabaudi malaria. During acute infection, hepatic inflammation and necrosis were accompanied by NLRP3 inflammasome-independent IL-1α production. Systemically, IL-1α deficiency attenuated weight loss and hypothermia but had minor effects on parasitemia control. In the liver, the absence of IL-1α reduced the number of TUNEL+ cells and necrotic lesions. This finding was associated with a lower inflammatory response, including TNF-α production. The main source of IL-1α in the liver of infected mice was inflammatory cells, particularly neutrophils. The implication of IL-1α in liver inflammation and necrosis caused by P. chabaudi infection, as well as in weight loss and hypothermia, opens up new perspectives for improving malaria outcomes by inhibiting IL-1 signaling
Trypanosoma cruzi infection in offspring born to chagasic C3H/He mice
This study reports the effects of Trypanosoma cruzi infection induced in C3H/He male and female mice born to chagasic mice. An experimental model was established infecting female C3H/He mice with a low virulent T. cruzi clone. In this model, mating, fertilization, pregnancy evolution and delivery was carried out successfully. The offspring was infected at four, six and eigth weeks of age. The results showed that the offspring born to chagasic mothers present decreased resistance to acquired T. cruzi infection. This decreased resistance was expressed by higher levels of parasitaemia and higher mortality rates in offspring born to chagasic mothers than in controls. Age and sex were shown to be important factors of this phenomenon. The results suggest that maternal immune system products can modulate the immune response of the offspring
Differential expression of adhesion moleculesshaping the T-cell subset prevalence during the early phase of autoimmune and Trypanosoma cruzi-elicited myocarditis
The participation of cell adhesion molecules (CAMs) in the establishment of autoimmune and infectious myocarditis is an important matter of investigation and may have therapeutic implication. Trypanosoma cruzi infection induces a CD8-mediated myocarditis in patients with severe cardiomyopathy and experimental animals. Previously, we have proposed that this predominance of CD8+ T-cells is, at least in part, consequence of the differential expression of CAMs on circulating CD8+ lymphocytes. In the present study we investigated the participation of CAMs in shaping the phenotypic nature of the autoimmune CD4-mediated myosin-induced and the CD8-mediated T. cruzi-elicited myocarditis. We provide evidence that the prevalence of a certain T-cell subset inside the inflamed heart reflects the differential profile of the adhesion molecules VLA-4, LFA-1, and ICAM-1 displayed on a large proportion of this particular T-cell population in peripheral blood during the early phase of inflammation. Further, the expression of VCAM-1, ligand for VLA-4, and ICAM-1, counter-receptor for LFA-1, was up-regulated on vascular endothelium and paralleled the entrance of inflammatory cells into the cardiac tissue. Thus, this up-regulated expression of receptors-counter-receptors that regulate T-cell transmigration through the vascular endothelium may have an important role in the pathogenesis of the early phase of both autoimmune and infectious myocarditis