6,906 research outputs found
Colour Reconnection at LEP
Two measurements are presented of estimators sensitive to the Colour
Reconnection effect in WW events at LEP2. The results are compared with various
phenomenological Monte Carlo implementations of the effect. A feasibility study
is performed to reduce the total uncertainty in the direct W boson mass
measurement at LEP2 by use of the inferred information about the Colour
Reconnection effect.Comment: Proceeding of the EPS Conference on HEP, Aachen 200
Top Quark Physics at the LHC
The Large Hadron Collider (LHC) is expected to provide proton-proton collisions at a centre-of-mass energy of 14 TeV, yielding millions of of top quark events. The top-physics potential of the two general purpose experiments, ATLAS and CMS, is discussed according to state-of-the-art simulation of both physics and detectors. An overview is given of the most important results with emphasis on the expected improvements in our understanding of physics connected to the top quark
Observations complementaires sur le polymorphisme enzymatique d'<i>Electra pilosa</i> et d<i>E. verticillata</i> (Bryozoaires Cheilostomes)
Evolutive observations on discontinuous populations of Alcyonidium polyoum (Hassall, 1841) (Bryozoa, Ctenostomatida) along the coasts of Galicia and of the Bay of Biscay
Bacterial diversity and community composition from seasurface to subseafloor
© The International Society for Microbial Ecology, 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 10 (2016): 979–989, doi:10.1038/ismej.2015.175.We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (greater than or equal to1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.This study was funded by the Biological Oceanography Program of the US National Science Foundation (grant OCE-0752336) and by the NSF-funded Center for Dark Energy Biosphere Investigations (grant NSF-OCE-0939564)
Recommended from our members
Measurement of masses in the [Formula: see text] system by kinematic endpoints in pp collisions at [Formula: see text].
A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for [Formula: see text] events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at [Formula: see text]. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of [Formula: see text] is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics
The Expectation Monad in Quantum Foundations
The expectation monad is introduced abstractly via two composable
adjunctions, but concretely captures measures. It turns out to sit in between
known monads: on the one hand the distribution and ultrafilter monad, and on
the other hand the continuation monad. This expectation monad is used in two
probabilistic analogues of fundamental results of Manes and Gelfand for the
ultrafilter monad: algebras of the expectation monad are convex compact
Hausdorff spaces, and are dually equivalent to so-called Banach effect
algebras. These structures capture states and effects in quantum foundations,
and also the duality between them. Moreover, the approach leads to a new
re-formulation of Gleason's theorem, expressing that effects on a Hilbert space
are free effect modules on projections, obtained via tensoring with the unit
interval.Comment: In Proceedings QPL 2011, arXiv:1210.029
- …
