43 research outputs found

    Quantum walks and topological phenomena with structured light

    Get PDF
    The manipulation of the spatial structure of a light beam has many application in both classical and quantum physics. The possibility to exploit high dimensional degrees of freedom carried by a light beam can be employed, among the various applications, for simulating the dynamics on quantum particles in multidimensional spaces. Coupling these degrees of freedom, like the orbital angular momentum or the transverse linear momentum, with the polarization of light (also associated with the spin) allows to implement quantum walks on one and two dimensional lattices. This work presents a series of experiments where these implementations of photonic quantum walks were realized exploiting patterned liquid crystal devices. In particular, the experimental setup allows to investigate interesting effects of the non-trivial topological features of the simulated processes, and test methods for the experimental measurement of topological invariants. This research has also led to the introduction of a novel method of characterizing unknown structured light beams and to the study of the stability of polarization singularities in laser beams

    Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams

    Get PDF
    Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the ability of measuring the complex spectrum of structured light beams in terms of these fundamental modes is crucial. Here we propose and experimentally validate a simple method that achieves this goal by digital analysis of the interference pattern formed by the light beam and a reference field. Our approach allows one to characterize the beam radial distribution also, hence retrieving the entire information contained in the optical field. Setup simplicity and reduced number of measurements could make this approach practical and convenient for the characterization of structured light fields.Comment: 8 pages (including Methods and References), 6 figure

    Effect of Aberrations on 3D optical topologies

    Full text link
    Optical knots and links, consisting of trajectories of phase or polarisation singularities, are intriguing nontrivial three-dimensional topologies. They are theoretically predicted and experimentally observed in paraxial and non-paraxial regimes, as well as in random and speckle fields. Framed and nested knots can be employed in security protocols for secret key sharing, quantum money, and topological quantum computation. The topological nature of optical knots suggests that environmental disturbances should not alter their topology; therefore, they may be utilised as a resilient vector of information. Hitherto, the robustness of these nontrivial topologies under typical disturbances encountered in optical experiments has not been investigated. Here, we provide the experimental analysis of the effect of optical phase aberrations on optical knots and links. We demonstrate that Hopf links, trefoil and cinquefoil knots exhibit remarkable robustness under misalignment and phase aberrations. The observed knots are obliterated for high aberration strengths and defining apertures close to the characteristic optical beam size. Our observations recommend employing these photonics topological structures in both classical and quantum information processing in noisy channels where optical modes are strongly affected and not applicable

    Bulk detection of time-dependent topological transitions in quenched chiral models

    Get PDF
    The topology of one-dimensional chiral systems is captured by the winding number of the Hamiltonian eigenstates. Here we show that this invariant can be read-out by measuring the mean chiral displacement of a single-particle wavefunction that is connected to a fully localized one via a unitary and translational-invariant map. Remarkably, this implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases. We confirm experimentally these results in a quantum walk of structured light

    Tera-mode of Spatiotemporal N00N States

    Full text link
    Two-photon interference is widely used in quantum information processing, e.g., state engineering and designing quantum gates, as well as in quantum sensing and metrology. This includes the generation and characterization of N00N states, which provide a phase measurement sensitivity that is beyond the shot-noise limit. There have been numerous efforts in generating N00N states with a photon number higher than 2, since their measurement sensitivity increases with N. Both photon number state and modal (temporal, spectral, and spatial) properties of light offer advantages in sensing, where the latter is achieved through mode-multiplexed measurements. Here, we experimentally demonstrate, with the aid of a recently developed photon-detection technology, measurement and characterization of up to tera-mode spatiotemporal correlations in two-photon interference and use it to generate high-dimensional two-photon N00N-states, which can be advantageous for multiphase estimation. We observe a high bi-photon interference and coalescence visibility of ∼64%\sim64\% and ∼88%\sim88\% for a tera (101210^{12}) and 0.2 tera (2×10112\times 10^{11}) spatiotemporal modes, respectively. These results open up a route for practical applications of using the spatiotemporal degrees of freedom in two-photon interference, and in particular, for quantum sensing and communication.Comment: 8 pages, 6 figure

    Two-dimensional topological quantum walks in the momentum space of structured light

    Get PDF
    Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an innovative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in the transverse wavevector components of a single light beam. The desired dynamics is obtained by means of a sequence of liquid-crystal devices, which apply polarization-dependent transverse "kicks" to the photons in the beam. We engineer our quantum walk so that it realizes a periodically-driven Chern insulator, and we probe its topological features by detecting the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological systems.Comment: Published version of the manuscrip

    Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions

    Get PDF
    Nowadays, detailed kinetics is necessary for a proper estimation of both flame structure and pollutant formation in compression ignition engines. However, large mechanisms and the need to include turbulence/chemistry interaction introduce significant computational overheads. For this reason, tabulated kinetics is employed as a possible solution to reduce the CPU time even if table discretization is generally limited by memory occupation. In this work the authors applied tabulated homogeneous reactors (HR) in combination with different turbulent-chemistry interaction approaches to model non-premixed turbulent combustion. The proposed methodologies represent good compromises between accuracy, required memory and computational time. The experimental validation was carried out by considering both constant-volume vessel and Diesel engine experiments. First, the ECN Spray A configuration was simulated at different operating conditions and results from different flame structures are compared with experimental data of ignition delay, flame lift-off, heat release rates, radicals and soot distributions. Afterwards, engine simulations were carried out and computed data are validated by cylinder pressure and heat release rate profiles

    Topological features of vector vortex beams perturbed with uniformly polarized light

    No full text
    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two elds, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can nd application in the context of singularimetry, where weak elds are measured by considering them as perturbations of unstable optical beams

    Fast Adaptive Optics for High-Dimensional Quantum Communications in Turbulent Channels

    Full text link
    Quantum Key Distribution (QKD) promises a provably secure method to transmit information from one party to another. Free-space QKD allows for this information to be sent over great distances and in places where fibre-based communications cannot be implemented, such as ground-satellite. The primary limiting factor for free-space links is the effect of atmospheric turbulence, which can result in significant error rates and increased losses in QKD channels. Here, we employ the use of a high-speed Adaptive Optics (AO) system to make real-time corrections to the wavefront distortions on spatial modes that are used for high-dimensional QKD in our turbulent channel. First, we demonstrate the effectiveness of the AO system in improving the coupling efficiency of a Gaussian mode that has propagated through turbulence. Through process tomography, we show that our system is capable of significantly reducing the crosstalk of spatial modes in the channel. Finally, we show that employing AO reduces the quantum dit error rate for a high-dimensional orbital angular momentum-based QKD protocol, allowing for secure communication in a channel where it would otherwise be impossible. These results are promising for establishing long-distance free-space QKD systems.Comment: 8 pages, 5 figures, supplemetary material include
    corecore