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Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the
ability to measure the complex spectrum of structured light beams in terms of these fundamental modes is crucial.
Here we propose and experimentally validate a simple method that achieves this goal by digital analysis of the in-
terference pattern formed by the light beam and a reference field. Our approach allows one to also characterize the
beam radial distribution, hence retrieving the entire information contained in the optical field. Setup simplicity and
reduced number of measurements could make this approach practical and convenient for the characterization of
structured light fields. © 2017 Optical Society of America
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1. INTRODUCTION

In 1992, Allen et al. [1] showed that helical modes of light—
paraxial beams featuring a helical phase factor eimϕ, where ϕ is the
azimuthal angle around the beam axis and m is an integer—carry
a definite amount of orbital angular momentum (OAM) along
the propagation axis, equal to mℏ per photon [2]. Important real-
izations of such optical modes include, for example, Laguerre–
Gauss (LG) [1] and Hypergeometric Gaussian beams (HyGG)
[3], which share the typical twisted wavefront but differ in their
radial profiles. Controlled superpositions of helical modes, pos-
sibly combined with orthogonal polarization states via spin-orbit
interaction [4,5], result in spatially structured beams that are
proving useful for a broad set of photonic applications [6] such
as classical and quantum optical communication [7–10], quan-
tum information processing [11–13], and quantum simulations
[14,15]. The ability to experimentally ascertain the OAM values
associated with individual helical modes represents a fundamental
requirement for all applications based on twisted light. Hitherto,
this has been demonstrated by a variety of methods: exploiting
double-slit interference [16], diffraction through single apertures
[17–20] or through arrays of pinholes [21], interference with a
reference wave [22,23], interferometers [24–26], OAM-
dependent Doppler frequency shifts [27–29], phase flattening
and spatial mode projection using pitchfork holograms [30–32],
q-plates [33,34], spiral phase plates [35] and volume holograms
[36], spatial sorting of helical modes by mapping OAM states into

transverse momentum (i.e., propagation direction) [37,38], and
quantum weak measurements [39].

General structured fields are, however, not given by individual
helical modes, but can always be obtained as suitable superposi-
tions of multiple helical modes. Accordingly, a full experimental
characterization of these structured fields can be based on meas-
uring the complex coefficients (amplitude and phase) associated
with each mode appearing in the superposition for any given
choice of the mode basis. In general, this is not a trivial task,
but several methods for the reconstruction of the complex spec-
trum associated with the OAM degree of freedom have been dem-
onstrated thus far [24,28,29,33,35,36,40,41], possibly including
also the radial mode spectrum reconstruction [31,32,37–39,
42–44]. It is worth noting that, once these complex coefficients
are known, the complete spatial distribution of the electric field
can be obtained and important properties such as beam quality
factorM 2, beam width, and wavefront are easily computed at any
propagation distance [40,45]. Inspired by previous works
[28,29,46,47] introducing Fourier analysis in this context, here
we present an approach to the measurement of a light OAM spec-
trum and, more generally, to spatial mode decomposition of struc-
tured light that may prove to be more practical than most
alternatives. The OAM complex spectrum information is con-
tained in the intensity pattern resulting from the interference
of the light beam with a known reference field (such as a
Gaussian beam), and can hence be easily extracted by a suitable
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processing of the corresponding images recorded on a camera.
First, a Fourier transform with respect to the azimuthal angle leads
to determining the complex coefficients associated with each
OAM value as a function of the radial coordinate. Numerical in-
tegration over the latter then allows one to use this information to
determine the OAM power spectrum and, eventually, to decom-
pose each OAM component in terms of radial modes, e.g., LG
beams. Remarkably, all of the information associated with the spa-
tial mode decomposition, or with the OAM power spectrum, is
contained in a few images whose number does not scale with the
dimensionality of the set of detected helical modes. A unique
series of data recorded for the characterization of a given field
is used for obtaining the decomposition in any basis of spatial
modes carrying OAM (LG, HyGG, Bessel), as this choice comes
into play only at the stage of image analysis.

2. RESULTS AND DISCUSSION

A. Description of the Technique

In the following, we limit our attention to the case of scalar optics,
as extension to the full vector field is simply obtained by applying
the same analysis to two orthogonal polarization components.
Considering cylindrical coordinates !r;ϕ; z", the electric field
amplitude associated with a monochromatic paraxial beam
propagating along the z direction is given by

Es!r;ϕ; z; t" # As!r;ϕ; z"e−i!ωt−kz"; (1)

where ω is the optical frequency and k is the wave number. We
refer to Es as the signal field to distinguish it from the reference
beam that will be introduced later on. The information concern-
ing the spatial distribution of the field is contained in the complex
envelope As!r;ϕ; z". Being periodic with respect to the azimuthal
coordinate ϕ, such complex function can be expanded into a sum
of fundamental helical modes eimϕ, carryingmℏOAM per photon
along the z axis [2],

As!r;ϕ; z" #
XK 2

m#K 1

cm!r; z"eimϕ; (2)

where K 1 and K 2 are integer numbers representing the OAM
spectrum bounds of the field, respectively (they can also be
infinite in the case of unbounded spectra). Coefficients cm are
defined in terms of the angular Fourier transform

cm!r; z" #
1

2π

Z
2π

0
dϕe−imϕAs!r;ϕ; z": (3)

The probability P!m" that a photon is found in the m-order
OAM state is obtained from the coefficients cm by integrating
their squared modulus along the radial coordinate,

P!m" #
1

S

Z
∞

0
drrjcm!r; z"j2; (4)

where S #
P

m
R∞
0 drrjcm!r; z"j2 is the beam power at any trans-

verse plane. The quantity P!m" is also referred to as the OAM
power spectrum, or spiral spectrum of the beam, and does not
depend on the longitudinal coordinate z because of OAM con-
servation during propagation. A complete analysis of the field in
terms of transverse spatial modes is obtained by replacing eimϕ in
Eq. (2) with a complete set of modes having a well-defined radial
dependence, e.g., LG modes,

As!r;ϕ; z" #
XP2

p#P1

XK 2

m#K 1

bp;mLGp;m!r;ϕ; z"; (5)

where LGp;m!r;ϕ; z" is the complete LG mode of integer indices p
and m (with p ≥ 0) as explicitly defined in Section 4, Methods,
and P1 and P2 are positive integers defining the bounds for the
radial spectrum. The link between coefficients cm and bp;m is then
given by

bp;m #
Z

∞

0
rdrLG$

p;m!r; z"cm!r; z"; (6)

where we introduced the radial LG amplitudes LGp;m!r; z" #
LGp;m!r;ϕ; z"e−imϕ, for which the ϕ dependence is removed.

The procedure we present here allows one to measure the com-
plex quantities cm!r", or equivalently the coefficients bp;m. We
achieve this goal by letting the signal optical field interfere with
a reference wave E ref # Aref !r;ϕ; z"e−i!ωt−kz" having the same
polarization, frequency, wavelength, and optical axis of the beam
under investigation, and whose spatial distribution is known. The
simplest choice for this reference is a Gaussian beam. At any plane
transverse to the propagation direction, the intensity pattern I
formed by the superposition of signal and reference beams is
(we omit the functional dependence on the spatial coordinates)

I # I s % I ref % Ĩα: (7)

Here I s and I ref are the intensities corresponding to the sole signal
and reference fields, respectively, while the term Ĩα #
2Re!eiαAsA$

ref " corresponds to their interference modulation pat-
tern, α being a controllable optical phase between the two. The
interference modulation pattern can be experimentally singled out
by taking three images, namely I, I ref (blocking the signal beam),
and I s (blocking the reference beam), and then calculating the
difference Ĩα # I − I ref − I s.

The interference modulation pattern is linked to the OAM
mode decomposition by the following expression:

Ĩα # 2
X

m
jAref jjcmj cos&mϕ% α% βm'; (8)

where βm!r; z" # Arg&cm!r; z"' − Arg&Aref !r; z"'. By combining
two interference patterns obtained with α # 0 and α # π∕2,
one then gets

Ĩ 0 − iĨ π∕2 # 2
X

m
jAref jjcmjei&mϕ%βm ': (9)

Finally, Fourier analysis with respect to the azimuthal coordinate
allows one to determine the coefficients cm!r",

cm!r; z" #
1

4πA$
ref !r; z"

Z
2π

0
dϕ!Ĩ0 − iĨ π∕2"e−imϕ; (10)

which contains all the information associated with the spatial dis-
tribution of the electric field.

The method just described is required for a full modal decom-
position and requires taking a total of four images (that is, I with
α # 0 and α # π∕2, plus I ref and I s), maintaining also a good
interferometric stability between them. However, for applications
requiring the measurement of the OAM power spectrum only—
that is, ignoring the radial structure of the field, and for which the
OAM spectrum is bound from below (that is, there is a minimum
OAM value)—there is a simplified procedure that is even easier
and more robust (the case for which the spectrum is limited from
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above can be treated equivalently). In the case of beams contain-
ing helical modes with both positive and negative charges
[K 1 < 0 and K 2 > 0 in Eq. (2)], this usually requires having
the signal beam first pass through a spiral optical phase element,
described by the transfer factor eiMϕ (this can be achieved with a
q-plate or a spiral phase plate with the appropriate topological
charge). If M > jK 1j, the spiral spectrum of the beam after this
optical component will contain only modes associated with pos-
itive OAM values. If K 1 and K 2 have the same sign, this prelimi-
nary procedure can be skipped. Then, one can extract the
associated probabilities P!m" by Fourier analysis of Ĩ 0 only
[see Eq. (8)], with no need of also measuring Ĩ π∕2, thus reducing
the number of required images to three and simplifying the setup.
We discuss this in detail in the final part of the paper.

B. Experimental Results

We demonstrate the validity of our technique by determining the
OAM spectrum and the radial profile of the associated helical
modes for a set of structured light fields. The setup is shown
in Fig. 1 and described in detail in the figure caption. Here, struc-
tured light containing multiple OAM components is generated by
means of q-plates, consisting essentially of a thin layer of liquid
crystals whose local optic axes are arranged in a singular pattern,
characterized by a topological charge q [48,49]. The way such a

device modifies the spatial properties of a light beam is described
in detail in Section 4, Methods.

In Figs. 2(a)–2(c) and 2(d)–2(f ), we report the results of our
first experiment, consisting of the measurement of both ampli-
tude and phase of coefficients cm!r" of optical fields having
one (m # 8) and three (m # f−8; 0; 8g) different helical modes,
respectively, accompanied by the associated OAM power spec-
trum [see Eq. (4)]. We generate such structured light by shining
a q-plate with q # 4 with a left-circularly (horizontally) polarized
Gaussian beam and setting the plate optical retardation δ to the
value π (π∕2), respectively (see Section 4, Methods). Our data
nicely follows the results from our simulations, with some minor
deviations that are due to imperfections in the preparation of the

Fig. 1. Sketch of the experimental apparatus. (a) A He–Ne laser beam
passes through a polarizer (P) and is spatially cleaned and collimated by
means of an objective (Ob), a pinhole (ph) and a lens (L). A half-wave
plate (HWP) and a polarizing beam splitter (PBS) are used in order to
split the beam into the signal and reference arms, whose relative inten-
sities can be controlled by HWP rotation. Fields resulting from a com-
plex superposition of multiple helical modes were obtained by using
q-plates and quarter-wave plates (QWPs), as shown in panels (b) and
(c). After preparing the signal field, we place a further sequence of a
QWP and a q-plate in case we need to shift the entire OAM spectrum.
The reference field is a TEM0;0 Gaussian mode. In the upper arm of the
interferometer, by orienting the QWP at 0 or 90° with respect to the
beam polarization we can introduce a α # 0 or π∕2 phase delay between
the signal and the reference field, respectively. The two beams are super-
imposed at the exit of a beam splitter (BS) and filtered through a polar-
izer, so that they share the same polarization state. The emerging intensity
pattern is recorded on a CCD camera (with resolution 576 × 668). (b) A
QWP oriented at 45° or 0, followed by q-plate with q # 4 and δ # π or
δ # π∕2, is used for the generation of a light beam containing a single
mode (m # 8) or three modes !m # −8; 0; 8", respectively. (c) two
q-plates with q # 1 and q # 1∕2 are aligned to generate spectra with
m ∈ &−3; 3'. (d) A set of more complex distributions was obtained by
displacing laterally the centre of a q-plate (q # 1 and δ # π) with respect
to the axis of the impinging Gaussian beam.

Fig. 2. Experimental reconstruction of light OAM spectrum. We re-
port the experimental characterization of optical fields containing one
(a-b-c) and three (d-e-f ) helical modes, generated using a q-plate with
q # 4 and δ # π or π∕2, respectively. In panels (g)–(j) we report the
experimental intensity patterns I ref , I s , I 0 and I π∕2, respectively, obtained
when investigating the field generated by the q-plate with δ # π∕2.
Panels (a) and (d) show the OAM distributions in the two cases.
Error bars are calculated as three times the standard error. Panels (b),
(c) and (e), (f ) show the measured amplitude and phase profiles of
the non-vanishing helical modes that are present in the beam, where blue,
red and green colored points are associated with modes with
m # 0; 8; −8, respectively. These results are compared with theoretical
simulations, represented as continuous curves with the same color
scheme adopted for the experimental results. For each value of m, we
plot normalized coefficients c̃m # cm∕Sm, where Sm is the total power
associated with the helical mode. As expected from theory, a fraction
of the beam is left in the fundamental Gaussian state, while an equal
amount of light is converted into helical modes with m # (8, both hav-
ing the radial profile of aHyGG−8;8 mode. Simulated profiles of Gaussian
and HyGG modes correspond to w0 # 1.45 mm and z # 30 cm, the
latter being the distance between the q-plate and the camera. Error bars
are smaller than experimental points.
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structured fields. In particular, in panel a, the small peaks centered
around m # −8 are related to the possible ellipticity of the polari-
zation of the Gaussian beam impinging on the q-plate, while a
small contribution at m # 0 corresponds to the tiny fraction
of the input beam that has not been converted by the q-plate.
In panels b and e, the radial profiles used for our simulations
are those corresponding to the Hypergeometric-Gaussian modes
[3], the helical modes that are expected to describe the optical
field at the exit of the q-plate [50] (see Section 4, Methods,
for details). Error bars shown in our plots are those associated with
the variability in selecting the correct center r # 0 in the exper-
imental images, which is identified as one of the main sources of
uncertainty in the spectral results. They are estimated as three
times the standard deviation of the data computed after repeating
our analysis with the coordinate origin set in one of 25 pixels that
surround our optimal choice. Other possible systematic errors,
such as, for example, slight misalignments between the signal
and reference fields, are not considered here.

Data reported in Fig. 2 prove our ability to measure the com-
plex radial distribution of the field associated with individual hel-
ical modes in a superposition. For each of these, we can use our
results to obtain a decomposition in terms of a complete set of
modes. For a demonstration of this concept, we consider the field
obtained when a left-circularly polarized beam passes through a
q-plate with q # 4 and δ # π. The latter contains only a mode
with m # 8, as shown in Figs. 2(a)–2(c). By evaluating the in-
tegrals reported in Eq. (6), we determine the coefficients bp;8
of a LG decomposition. For our analysis, we use LG beams with
an optimal waist parameter w̃0 (different from the one of the im-
pinging Gaussian beam), defined so that the probability of the
lowest radial index p # 0 is maximal [51]. In Fig. 3, we plot
the squared modulus and phase of the coefficients bp;8 determined
experimentally, matching nicely the results obtained from
numerical simulations.

C. Shifting the OAM Power Spectrum

As mentioned above, shifting the OAM spectrum of the signal
field may be used to simplify its measurement when reconstruct-
ing the radial profile is not needed. In our case, we let the signal
field pass through a q-plate with q # M∕2 and δ # π, after

preparing it in a state of left-circular polarization. If M is large
enough, i.e., higher than K 1 [see Eq. (2)], we have that
c!m" ≠ 0 only if m > 0. This allows, in turn, using Eq. (8) to
determine the OAM spectrum, instead of Eq. (9), which requires
the measurement of I π∕2 also. At the same time, this approach is
less sensitive to possible noise related to beam imperfections or
slight misalignments, typically associated with small spatial
frequencies, that affect the lowest-order helical modes, as reported
also in Refs. [28,29]. Let us note that once the beam passes
through an optical element adding the azimuthal phase eiMϕ,
thanks to the conservation of OAM during free propagation,
the associated power OAM spectrum is only shifted by M units,
that is, P!m" → P!m%M". The radial distribution of individual
helical modes, on the other hand, is altered during propagation,
that is, cm!r; z"↛cm%M !r; z". For this reason, this alternative pro-
cedure proves convenient only when determining the OAM prob-
ability distribution, but cannot be applied to the reconstruction of
the full modal decomposition. In Fig. 4, we report the measured
power spectrum of different fields containing helical modes with
m ∈ &−3; 3' (see Section 4 (Methods) and the figure caption for
further details on the generation of such complex fields), as de-
termined by shifting the OAM spectrum byM # 8 by means of a
q-plate with q # 4 and δ # π.

D. OAM Spectra for Displaced q-Plates

As a final test, we used our technique for characterizing more
complex optical fields, such as those emerging from a q-plate
whose central singularity is displaced with respect to the input
Gaussian beam axis [Fig. 1(c)]. In Fig. 5, we report the OAM
probability distributions obtained when translating a q-plate
(q # 1, δ # π) in a direction that is parallel to the optical table,
with steps of Δx # 0.125 mm. Our data are in excellent agree-
ment with results obtained from numerical simulations. In the
same figure, we show part of the associated total intensity patterns
I0 [see Eq. (7)] recorded on the camera. In addition, for each
configuration, we show in Fig. 5 that the first- and second-order
moments of the probability distributions are characterized by
Gaussian profiles hmi # 2q exp!−2x20∕w2

0" and hm2i #
!2q"2 exp!−2x20∕w2

0" [52]. Fitting our data so that they follow
the expected Gaussian distributions (red curves), we obtain wfit

0 #
1.36( 0.04 mm from hmi (panel g), and wfit

0 # 1.39(
0.06 mm from hm2i (panel h), which are close to the expected
value w0 # 1.45( 0.18 mm.

Fig. 3. Complete spatial mode decomposition in terms of LG beams.
We consider the light beam emerging from a q-plate with (q # 4,
δ # π), described by a HyGG−8;8 mode [50]. We evaluate the overlap
integral between the radial envelope c8!r" measured in our experiment at
z # 30 cm and LGp;8 modes at the same value of z and characterized by
the optimal beam waist w̃0 # w0∕3 [51], where w0 is the input beam
waist. In panels (a) and (b) we plot the squared modulus and the phase of
the resulting coefficients (blue markers), respectively, showing a good
agreement with the values obtained from numerical simulations (red
markers). The phases of bp;8 with p equal to odd integers are absent
in the plot since the corresponding amplitudes are consistent with zero,
that is smaller than the associated statistical uncertainties.

Fig. 4. Measure of shifted OAM power spectrum. OAM probability
distributions are measured for two different optical fields, obtained when
shining a sequence of two q-plates with q1 # 1 and q2 # 1∕2 with hori-
zontally polarized light. A further q-plate with q # 4 shifts the final spec-
trum by M # 8 units. (a) OAM spectrum for the case δ1 # π and
δ2 # π. (b) The same data are reported for a different field, obtained
when δ1 # π and δ2 # π∕2. Error bars represent the standard error
multiplied by three.
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E. Range of Detectable Helical Modes

Finite size of the detector area and the camera resolution impose
natural limitations to our approach that cannot be used to
characterize helical modes with arbitrary values of m and radial
profiles. Starting from these considerations, in Section 4,
Methods, we describe how to evaluate the bandwidth of detect-
able LGmodes in terms of sensor area and resolution, and provide
an explicit example for our specific configuration (associated data
are reported in Fig. 6).

3. CONCLUSIONS

In this study we introduced a new technique for measuring the
OAM spectrum of a laser beam accompanied by its complete spa-
tial mode decomposition in terms of an arbitrary set of modes that
carry a definite amount of OAM, such as LG beams or others.
Based on the azimuthal Fourier analysis of the interference pat-
tern formed by the signal and the reference field, relying on only a
few measurements, this approach allows one to readily extract the
information contained in both the radial and azimuthal degrees of
freedom of a structured light beam. Standard interferometric
techniques, as reported for instance in Refs. [53,54], are

commonly used for the measurement of the phase profile of
optical waves, allowing for the measurement of the complex spa-
tial envelope As of the field [see Eq. (1)]. However, using this
information to obtain the decomposition in terms of a complete
set of helical modes [using Eqs. (3) and (6)], and, in turn, the
OAM power spectrum, has not been thoroughly explored before.
Furthermore, when interested in the spiral spectrum only, we
demonstrated that it is actually possible to retrieve the OAM dis-
tribution without measuring the complete field, making use of a
reduced number of measurements.

In our approach, the most general method requires taking four
images, including the intensity patterns of the signal beam, the
reference beam, and two interference patterns between them.
Information on the modal decomposition of the signal field is
then retrieved using a simple dedicated software. Since the spatial
mode decomposition is obtained during this post-processing pro-
cedure, the same set of images can be used to decompose a beam
in different sets of spatial modes. As demonstrated here, the ex-
perimental implementation of our approach requires a simple in-
terferometric scheme and minimal equipment. Hence, it may be
readily extended to current experiments dealing with the charac-
terization of spatial properties and OAM decomposition of
structured light.

4. METHODS

A. Spatial Modes Carrying OAM

Using adimensional cylindrical coordinates ρ # r∕w0 and
ζ # z∕zR , where w0 is the waist radius of the Gaussian envelope
and zR the Rayleigh range, respectively, Laguerre–Gaussian LGp;m
modes have the well-known expression

LGp;m!ρ; ζ;ϕ" #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jmj%1p!

π!p% jmj"!!1% ζ2"

s "
ρffiffiffiffiffiffiffiffiffiffiffiffiffi

1% ζ2
p

#
jmj

× e−
ρ2

1%ζ2Ljmjp !2ρ2∕!1% ζ2""

× ei
ρ2

ζ%1∕ζeimϕ−i!2p%jmj%1" arctan!ζ"; (11)
where Ljmjp !x" is the generalized Laguerre polynomial, p is a
positive integer, and m is the azimuthal index associated with
the OAM.

When a Gaussian beam passes through an optical element that
impinges on it a phase factor eimϕ, the outgoing field is described
by a Hypergeometric-Gaussian mode HyGGp;m [3,50] with
p # −jmj,

HyGGp;m!ρ; ζ;ϕ" #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21%jmj%p

πΓ!1% jmj% p"

s
Γ!1% jmj% p∕2"

Γ!1% jmj"

× ijmj%1ζp∕2!ζ % i"−!1%jmj%p∕2"

× ρjmje−iρ2∕!ζ%i"%imϕ

× 1F 1!−p∕2; jmj% 1; ρ2∕!ζ!ζ % i""";
(12)

where Γ!z" is the Euler Gamma function and 1F 1!a; b; z" is the
confluent Hypergeometric function.

B. Generating Structured Light Using q-Plates

A q-plate is formed by a thin layer of liquid crystals; the angle α
describing the orientation of the optic axis of such molecules is a

Fig. 5. OAM spectrum for a shifted q-plate. We measure the OAM
power spectrum at the exit of a q-plate (q # 1, δ # π) shifted with re-
spect to the axis of the impinging Gaussian beam, which is left-circularly
polarized. The overall spectrum is shifted by M # 8 units since we are
using a further q-plate with q # 4 and δ # π. However, we plot the
original OAM distribution associated with the signal field. (a)–
(f ) Experimental (green) and simulated (red) OAM power spectra when
the lateral shift is equal to aΔx, with a # 1, 3, 6, 9, 12, 15 and
Δx # 0.125mm, respectively. Error bars represent the standard error
multiplied by three. (g)–(i) Examples of the experimental intensity pat-
tern I0 used for determining the power spectra reported in panels (a), (c),
(e). The number of azimuthal fringes reveals that the OAM spectrum has
been shifted. (j) and (k) First and second moment (hmi and hm2i) mea-
sured as a function of the lateral displacement. Error bars are not visible
because smaller than the experimental points.
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linear function of the azimuthal angle, that is, α!ϕ" # α0 % qϕ
(q is the topological charge, given by integer or semi-integer num-
bers). In our experiments, we set α0 # 0. In this case, the action
of the q-plate is described by the following Jones matrix (in the
basis of circular polarizations):

Q̂!δ" # cos

"
δ
2

#"
1 0
0 1

#
% i sin

"
δ
2

#"
0 e−imϕ

eimϕ 0

#
; (13)

where m # 2q and δ is the plate optical retardation, controllable
by applying an external electric field [55]. It is worth noting that
the second term of Eq. (13) introduces the azimuthal dependence
associated with the OAM degree of freedom. When a left- or
right-circularly polarized Gaussian beam passes through a q-plate
with δ # π, positioned at the waist of the beam, the output beam
is given byHyGG−jmj;(m, respectively [50]. In our experiment, we
generated superpositions of several OAM modes using single or
cascaded q-plates, characterized by specific values of q and δ that
are reported in the figure captions.

C. Limitations on the Set of Detectable Spatial Modes

We briefly discussed in the main text that the finite size of the
detector area and the finite dimension of sensor pixels impose
certain restrictions on the features of the helical modes that
can be resolved and correctly detected in our setup. Let us con-
sider the simple case wherein we want to decompose the signal
field in terms of LGp;m modes and we want to evaluate the p,
m-bandwidth of detectable modes. We consider only the case
m > 0, since only the absolute value jmj is relevant to our dis-
cussion. Consider a camera with N × N pixels, with pixel dimen-
sions d × d (in our setup N # 576 and d # 9 μm). We define
the following quantities:

rmax # d $ N∕2; (14)

rmin # md∕π; (15)

r1 # w!z"
$
2p% m − 2 − &1% 4!p − 1"!p% m − 1"'1∕2

2

%
1∕2

;

(16)

rp # w!z"
$
2p% m − 2% &1% 4!p − 1"!p% m − 1"'1∕2

2

%
1∕2

;

(17)

r̃p # w!z"f2p% m% 1g1∕2: (18)

Here rmax is the maximum radius available on the sensor; rmin is
the minimum radial distance where azimuthal oscillation associ-
ated with the OAM content of the LGp;m mode can be detected,
before facing aliasing issues; r1 is a lower bound for the first root
of the Laguerre polynomials contained in the expression of LG
modes; similarly, rp is the upper bound for the p-th root, while
r̃p, with rp < r̃p, delimits the oscillatory region of the Laguerre
polynomials [56,57]. Interestingly, the spatial region r1 < r <
r̃p well approximates the area containing all the power associated
with the mode. At the same time, the quantity Λ # !rp − r1"∕p
well describes the average distance between consecutive nodes of
the LG mode, defining the periodicity of their radial oscillations.
A given LGp;m mode is then “detectable” (or properly “resolvable”)
if all the following conditions are satisfied:

8
<

:

rmin < r1 !i"
rp < rmax !ii"
Λ > 2d !iii"

: (19)

Indeed, we are requiring (i) that the field is vanishing below the
azimuthal aliasing threshold given by rmin, (ii) that all the power
associated with the mode is contained in the sensor area, and
(iii) that the field radial oscillations have a spatial period such that
at least two pixels are contained in a single period, respectively
(radial aliasing limit). It is easy to check that in our configuration,
where the beam waist is w!z" # 0.4 mm, conditions (i) and (iii)
are always satisfied for the values of fp; mg that are solutions of
(ii), i.e., the limiting factor is only the dimension of the sensor
area. By solving such inequality, we get the relation

p <
"
N 2d 2

4w2!z"
− m − 1

#
∕2: (20)

In Fig. 6 we plot a colormap for a rapid visualization of detectable
modes. If we apply this analysis to the case of Fig. 3, in which a
beam with m # 8 is studied, we obtain that only radial modes
with p < 16 can be detected. In general, for smaller values of
w!z", the determination of a detectable LG mode is more
complex and requires the complete resolution of the system of
inequalities system given in (19).

Funding. H2020 European Research Council (ERC)
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