792 research outputs found

    Magnetic properties of the strongly interacting matter

    Get PDF
    We study the magnetic properties of the strongly interacting matter using Lattice QCD simulations. The QCD medium shows a paramagnetic behavior in the range of temperatures 100–400 MeV, with a sharp increase of the magnetic susceptibility above the deconfinement temperature. We expect a significant magnetic contribution to the pressure of the system in non-central heavy-ion collisions

    Anisotropy of the QQ potential in a magnetic field

    Get PDF
    We study how the static quark-antiquark potential for Nf = 2+1 QCD at the physical point gets modified by the presence of a constant and uniform magnetic field. We observe an anisotropy to appear in the potential: it gets steeper in the directions transverse to the magnetic field than in the longitudinal one. By comparing to the case with zero magnetic field, we show that the string tension increases (decreases) in the perpendicular (parallel) direction, while the absolute value of the Coulomb coupling and the Sommer parameter show the opposite behavior

    Thyroid-specific transcription factors control Hex promoter activity

    Get PDF
    The homeobox-containing gene Hex is expressed in several cell types, including thyroid follicular cells, in which it regulates the transcription of tissue-specific genes. In this study the regulation of Hex promoter activity was investigated. Using co-transfection experiments, we demonstrated that the transcriptional activity of the Hex gene promoter in rat thyroid FRTL-5 cells is ∼10-fold greater than that observed in HeLa and NIH 3T3 cell lines (which do not normally express the Hex gene). To identify the molecular mechanisms underlying these differences, we evaluated the effect of the thyroid-specific transcription factor TTF-1 on the Hex promoter activity. TTF-1 produced 3-4-fold increases in the Hex promoter activity. Gel-retardation assays and mutagenesis experiments revealed the presence of functionally relevant TTF-1 binding sites in the Hex promoter region. These in vitro data may also have functional relevance in vivo, since a positive correlation between TTF-1 and Hex mRNAs was demonstrated in human thyroid tissues by means of RT-PCR analysis. The TTF-1 effect, however, is not sufficient to explain the difference in Hex promoter activity between FRTL-5 and cells that do not express the Hex gene. For this reason, we tested whether Hex protein is able to activate the Hex promoter. Indeed, co-transfection experiments indicate that Hex protein is able to increase the activity of its own promoter in HeLa cells ∼4-fold. TTF-1 and Hex effects are additive: when transfected together in HeLa cells, the Hex promoter activity is increased 6-7-fold. Thus, the contemporary presence of both TTF-1 and Hex could be sufficient to explain the higher transcriptional activity of the Hex promoter in thyroid cells with respect to cell lines that do not express the Hex gene. These findings demonstrate the existence of direct cross-regulation between thyroid-specific transcription factors

    UVES/VLT high resolution absorption spectroscopy of the GRB080330 afterglow: a study of the GRB host galaxy and intervening absorbers

    Full text link
    We study the Gamma Ray Burst (GRB) environment and intervening absorbers by analyzing the optical absorption features produced by gas surrounding the GRB or along its line of sight. We analyzed high resolution spectroscopic observations (R=40000, S/N=3 - 6) of the optical afterglow of GRB080330, taken with UVES at the VLT ~ 1.5 hours after the GRB trigger. The spectrum illustrates the complexity of the ISM of the GRB host galaxy at z = 1.51 which has at least four components in the main absorption system. We detect strong FeII, SiII, and NiII excited absorption lines associated with the bluemost component only. In addition to the host galaxy, at least two more absorbers lying along the line of sight to the afterglow have been detected in the redshift range 0.8 < z < 1.1, each exhibiting MgII absorption. For the bluemost component in the host galaxy, we derive information about its distance from the site of the GRB explosion. We do so by assuming that the excited absorption lines are produced by indirect UV pumping, and compare the data with a time dependent photo-excitation code. The distance of this component is found to be 280+40-50 pc, which is lower than found for other GRBs (1 - 6 kpc). We identify two additional MgII absorbers, one of them with a rest frame equivalent width larger than 1A. The distance between the GRB and the absorber measured in this paper confirms that the power of the GRB radiation can influence the conditions of the interstellar medium up to a distance of at least several hundred pc. For the intervening absorbers, we confirm the trend that on average one strong intervening system is found per afterglow, as has been noted in studies exhibiting an excess of strong MgII absorbers along GRB sightlines compared to quasars.Comment: 8 Pages, 7 ps figures, A&A in pres

    X-Shooter spectroscopy of young stellar objects: II. Impact of chromospheric emission on accretion rate estimates

    Full text link
    Context. The lack of knowledge of photospheric parameters and the level of chromospheric activity in young low-mass pre-main sequence stars introduces uncertainties when measuring mass accretion rates in accreting (Class II) Young Stellar Objects. A detailed investigation of the effect of chromospheric emission on the estimates of mass accretion rate in young low-mass stars is still missing. This can be undertaken using samples of young diskless (Class III) K and M-type stars. Aims. Our goal is to measure the chromospheric activity of Class III pre main sequence stars to determine its effect on the estimates of accretion luminosity (Lacc) and mass accretion rate (Macc) in young stellar objects with disks. Methods. Using VLT/X-Shooter spectra we have analyzed a sample of 24 non-accreting young stellar objects of spectral type between K5 and M9.5. We identify the main emission lines normally used as tracers of accretion in Class II objects, and we determine their fluxes in order to estimate the contribution of the chromospheric activity to the line luminosity. Results. We have used the relationships between line luminosity and accretion luminosity derived in the literature for Class II objects to evaluate the impact of chromospheric activity on the accretion rate measurements. We find that the typical chromospheric activity would bias the derived accretion luminosity by Lacc,noise< 10-3Lsun, with a strong dependence with the Teff of the objects. The noise on Macc depends on stellar mass and age, and the typical values of log(Macc,noise) range between -9.2 to -11.6Msun/yr. Conclusions. Values of Lacc< 10-3Lsun obtained in accreting low-mass pre main sequence stars through line luminosity should be treated with caution as the line emission may be dominated by the contribution of chromospheric activity.Comment: accepted for publication in Astronomy & Astrophysic

    X-Shooter spectroscopy of young stellar objects: IV -- Accretion in low-mass stars and sub-stellar objects in Lupus

    Full text link
    We present X-Shooter/VLT observations of a sample of 36 accreting low-mass stellar and sub-stellar objects (YSOs) in the Lupus star forming region, spanning a range in mass from ~0.03 to ~1.2Msun, but mostly with 0.1Msun < Mstar < 0.5Msun. Our aim is twofold: firstly, analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and from it the accretion rate (Macc), is derived by modelling the excess emission, from the UV to the near-IR, as the continuum emission of a slab of hydrogen. The flux and luminosity (Ll) of a large number of emission lines of H, He, CaII, etc., observed simultaneously in the range from ~330nm to 2500nm, were computed. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion as compared to previous relationships in the literature. Our measurements extend the Pab and Brg relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies to measure Lacc and Macc yield significantly different results: Ha line profile modelling may underestimate Macc by 0.6 to 0.8dex with respect to Macc derived from continuum-excess measures. Such differences may explain the likely spurious bi-modal relationships between Macc and other YSOs properties reported in the literature. We derive Macc in the range 2e-12 -- 4e-8 Msun/yr and conclude that Macc is proportional to Mstar^1.8(+/-0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Macc

    X-Shooter spectroscopy of young stellar objects III. Photospheric and chromospheric properties of Class III objects

    Full text link
    We analyzed X-Shooter/VLT spectra of 24 ClassIII sources from three nearby star-forming regions (sigmaOrionis, LupusIII, and TWHya). We determined the effective temperature, surface gravity, rotational velocity, and radial velocity by comparing the observed spectra with synthetic BT-Settl model spectra. We investigated in detail the emission lines emerging from the stellar chromospheres and combined these data with archival X-ray data to allow for a comparison between chromospheric and coronal emissions. Both X-ray and Halpha luminosity as measured in terms of the bolometric luminosity are independent of the effective temperature for early-M stars but decline toward the end of the spectral M sequence. For the saturated early-M stars the average emission level is almost one dex higher for X-rays than for Halpha: log(L_x/L_bol) = -2.85 +- 0.36 vs. log(L_Halpha/L_bol) = -3.72 +- 0.21. When all chromospheric emission lines (including the Balmer series up to H11, CaII HK, the CaII infrared triplet, and several HeI lines) are summed up the coronal flux still dominates that of the chromosphere, typically by a factor 2-5. Flux-flux relations between activity diagnostics that probe different atmospheric layers (from the lower chromosphere to the corona) separate our sample of active pre-main sequence stars from the bulk of field M dwarfs studied in the literature. Flux ratios between individual optical emission lines show a smooth dependence on the effective temperature. The Balmer decrements can roughly be reproduced by an NLTE radiative transfer model devised for another young star of similar age. Future, more complete chromospheric model grids can be tested against this data set.Comment: accepted for publication in Astronomy & Astrophysic

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Confinement and Chiral Symmetry

    Full text link
    We illustrate why color deconfines when chiral symmetry is restored in gauge theories with quarks in the fundamental representation, and while these transitions do not need to coincide when quarks are in the adjoint representation, entanglement between them is still present.Comment: 4 pages, 1 figure, proceedings of Quark Matter 200
    corecore