32 research outputs found
Safety and patients' satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly® device in headache treatment: a survey of 2,313 headache sufferers in the general population.
BACKGROUND: Transcutaneous supraorbital nerve stimulation (tSNS) with the Cefaly® device was recently found superior to sham stimulation for episodic migraine prevention in a randomized trial. Its safety and efficiency in larger cohorts of headache sufferers in the general population remain to be determined.The objective of this study was to assess the satisfaction with the Cefaly® device in 2,313 headache sufferers who rented the device for a 40-day trial period via Internet.
METHODS: Only subjects using specific anti-migraine drugs, and thus most likely suffering from migraine, were included in the survey. Adverse events (AEs) and willingness to continue tSNS were monitored via phone interviews after the trial period. A built-in software allowed monitoring the total duration of use and hence compliance in subjects who returned the device to the manufacturer after the trial period.
RESULTS: After a testing period of 58.2 days on average, 46.6% of the 2,313 renters were not satisfied and returned the device, but the compliance check showed that they used it only for 48.6% of the recommended time. The remaining 54.4% of subjects were satisfied with the tSNS treatment and willing to purchase the device. Ninety-nine subjects out of the 2,313 (4.3%) reported one or more AEs, but none of them was serious. The most frequent AEs were local pain/intolerance to paresthesia (47 subjects, i.e. 2.03%), arousal changes (mostly sleepiness/fatigue, sometimes insomnia, 19 subjects, i.e. 0.82%), headache after the stimulation (12 subjects, i.e. 0.52%). A transient local skin allergy was seen in 2 subjects, i.e. 0.09%.
CONCLUSIONS: This survey of 2,313 headache sufferers in the general population confirms that tSNS with is a safe and well-tolerated treatment for migraine headaches that provides satisfaction to a majority of patients who tested it for 40 days. Only 4.3% of subjects reported AEs, all of them were minor and fully reversible
Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype
BackgroundInherited epimutations of Mismatch Repair (MMR) genes are responsible for Lynch Syndrome (LS) in a small, but well defined, subset of patients. Methylation of the MSH2 promoter consequent to the deletion of the upstream EPCAM gene is found in about 1%-3% of the LS patients and represents a classical secondary, constitutional and tissue-specific epimutation. Several different EPCAM deletions have been reported worldwide, for the most part representing private variants caused by an Alu-mediated recombination.Methods712 patients with suspected LS were tested for MMR mutation in our Institute. EPCAM deletions were detected by multiplex ligation-dependent probe amplification (MLPA) and then defined by Long-Range polymerase chain reaction (PCR)/Sanger sequencing. A comprehensive molecular characterization of colorectal cancer (CRC) tissues was carried out by immunohistochemistry of MMR proteins, Microsatellite Instability (MSI) assay, methylation specific MLPA and transcript analyses. In addition, somatic deletions and/or variants were investigated by MLPA and next generation sequencing (NGS).ResultsAn EPCAM deletion was found in five unrelated probands in Italy: variants c.556-490_*8438del and c.858+1193_*5826del are novel; c.859-1430_*2033del and c.859-670_*530del were previously reported. All probands were affected by CRC at young age; tumors showed MSI and abnormal MSH2/MSH6 proteins expression. MSH2 promoter methylation, as well as aberrant in-frame or out-of-frame EPCAM/MSH2 fusion transcripts, were detected in CRCs and normal mucosae.ConclusionAn EPCAM deletion was the causative variant in about 2% of our institutional series of 224 LS patients, consistent with previously estimated frequencies. Early age and multiple CRCs was the main clinical feature of this subset of patients
Long‐term outcomes of phenoclusters in preclinical heart failure with preserved and mildly reduced ejection fraction
Aims The identification of subjects at higher risk for incident heart failure (HF) with preserved ejection fraction (EF) suitable for more intensive preventive programmes remains challenging. We applied phenomapping to the DAVID-Berg population, comprising subjects with preclinical HF, aiming to refine HF risk stratification. Methods The DAVID-Berg study prospectively enrolled 596 asymptomatic outpatients with EF > 40% with hypertension, diabetes mellitus or known cardiovascular disease. In this cohort, we performed an unsupervised cluster analysis on 591 patients, including clinical, laboratory, electrocardiographic and echocardiographic parameters. We tested the association between each cluster and a composite outcome of HF/death. Results The median age was 70 years, 55.5% were males and the median EF was 61.0%. Phenomapping provided three different clusters. Subjects in Cluster 3 were the oldest and had the highest prevalence of atrial fibrillation, the lowest estimated glomerular filtration rate (eGFR), the highest N-terminal pro-brain natriuretic peptide (NT-proBNP) and the largest left atrium. During a median follow-up of 5.7 years, 13.4% of subjects experienced HF/death events (N = 79). Compared with Clusters 1 and 2, Cluster 3 had the worst prognosis (log-rank test: Cluster 3 vs. 1 P < 0.001; Cluster 3 vs. 2 P = 0.008). Cluster 3 was associated with a risk of HF/death 2.5 times higher than Cluster 1 [adjusted hazard ratio (HR) = 2.46, 95% confidence interval (CI) 1.24-4.90]. Conclusions Based on phenomapping, older patients with lower kidney function and worse diastolic function might represent a subset of preclinical HF with EF > 40% who deserve more efforts to prevent clinical HF
HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes
SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 \ub5M, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency
Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia
: Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≥1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score ≥1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≥190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH
Unveiling the enigma of ATLAS17aeu
Aims: The unusual transient ATLAS17aeu was serendipitously detected within the sky localisation of the gravitational wave trigger GW 170104. The importance of a possible association with gravitational waves coming from a binary black hole merger led to an extensive follow-up campaign, with the aim of assessing a possible connection with GW 170104. Methods: With several telescopes, we carried out both photometric and spectroscopic observations of ATLAS17aeu, for several epochs, between ∼3 and ∼230 days after the first detection. Results: We studied in detail the temporal and spectroscopic properties of ATLAS17aeu and its host galaxy. Although at low significance and not conclusive, we found similarities to the spectral features of a broad-line supernova superposed onto an otherwise typical long-GRB afterglow. Based on analysis of the optical light curve, spectrum, and host galaxy spectral energy distribution, we conclude that the redshift of the source is probably z ≃ 0.5 ± 0.2. Conclusions: While the redshift range we have determined is marginally compatible with that of the gravitational wave event, the presence of a supernova component and the consistency of this transient with the Ep-Eiso correlation support the conclusion that ATLAS17aeu was associated with the long gamma-ray burst GRB 170105A. This rules out the association of the GRB 170105A/ATLAS17aeu transient with the gravitational wave event GW 170104, which was due to a binary black hole merger. Based on observations made with the following telescopes: Copernico, TNG (under programme A34TAC_24), GTC (under programmes GTCMULTIPLE2D-16B and GTCMULTIPLE2G-17A), LBT (under programme 2016_2017_19), and HST (under programme GO14270).Spectral data for this source shown on this paper are available on the Weizmann Interactive Supernova Data Repository (WISeREP, http://https://wiserep.weizmann.ac.il/)
CUBES: the Cassegrain U-band Efficient Spectrograph
In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (> 40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R >20, 000 (with a lower-resolution, sky-limited mode of R ~7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028
CUBES : the Cassegrain U-band Efficient Spectrograph
In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (> 40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R >20, 000 (with a lower-resolution, sky-limited mode of R ~7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028