1,250 research outputs found

    Il primo OBS/H italiano per il monitoraggio e lo studio di faglie e vulcani sottomarini

    Get PDF
    L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) ha testato con successo, nel luglio 2006, il primo Ocean Bottom Seismometer with Hydrophone (OBS/H) italiano (Fig. 1). Lo strumento, interamente progettato e realizzato all’Osservatorio di Gibilmanna del Centro Nazionale Terremoti, dopo aver superato i test in laboratorio, in camera iperbarica a 600 bar ed in mare a 3412 m di profondità, è stato deposto per 9 giorni (12-21/07/’06) sulla spianata sommitale del vulcano sottomarino Marsili a 790 m di profondità (Fig. 2) ed ha registrato 835 eventi tra cui un telesisma, 8 eventi regionali e circa 800 eventi vulcanici

    Evaluation of the quality and antioxidant capacity of woodland strawberry biotypes in Sicily

    Get PDF
    In Sicily, the woodland strawberry grows wild in forest glades in the Madonie and Nebrodi mountains and on Mount Etna. In this region, the main cultivated clone is Fragolina di Ribera, named after the towns where the crop originally developed. The cultivated woodland strawberry is different from its wild counterparts not only in vegetative vigour and size, but also in organoleptic quality. Fragolina di Ribera has always been described with sensory analysis as one of the best Sicilian berry. This study was carried out in Sicily and compared two June-bearing Fragaria vesca: Fragolina di Ribera and Fragolina di Maletto, and an everbearing variety Regina delle Valli, in order to determine the production, quality and nutraceutical characteristics of the fruit. Research results provided useful, more detailed information on those fruit compounds with nutritional and health benefits and the June-bearing Fragolina di Ribera was found not only to produce highly sweet, bright red fruits, but also fruits with high antioxidant capacity and high ascorbic acid, polyphenol and anthocyanin levels

    Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Get PDF
    In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system

    Observing Brownian motion in vibration-fluidized granular matter

    Full text link
    At the beginning of last century, Gerlach and Lehrer observed the rotational Brownian motion of a very fine wire immersed in an equilibrium environment, a gas. This simple experiment eventually permitted the full development of one of the most important ideas of equilibrium statistical mechanics: the very complicated many-particle problem of a large number of molecules colliding with the wire, can be represented by two macroscopic parameters only, namely viscosity and the temperature. Can this idea, mathematically developed in the so-called Langevin model and the fluctuation-dissipation theorem be used to describe systems that are far from equilibrium? Here we address the question and reproduce the Gerlach and Lehrer experiment in an archetype non-equilibrium system, by immersing a sensitive torsion oscillator in a granular system of millimetre-size grains, fluidized by strong external vibrations. The vibro-fluidized granular medium is a driven environment, with continuous injection and dissipation of energy, and the immersed oscillator can be seen as analogous to an elastically bound Brownian particle. We show, by measuring the noise and the susceptibility, that the experiment can be treated, in first approximation, with the same formalism as in the equilibrium case, giving experimental access to a ''granular viscosity'' and an ''effective temperature'', however anisotropic and inhomogeneous, and yielding the surprising result that the vibro-fluidized granular matter behaves as a ''thermal'' bath satisfying a fluctuation-dissipation relation

    What is the temperature of a granular medium?

    Full text link
    In this paper we discuss whether thermodynamical concepts and in particular the notion of temperature could be relevant for the dynamics of granular systems. We briefly review how a temperature-like quantity can be defined and measured in granular media in very different regimes, namely the glassy-like, the liquid-like and the granular gas. The common denominator will be given by the Fluctuation-Dissipation Theorem, whose validity is explored by means of both numerical and experimental techniques. It turns out that, although a definition of a temperature is possible in all cases, its interpretation is far from being obvious. We discuss the possible perspectives both from the theoretical and, more importantly, from the experimental point of view
    corecore