23 research outputs found

    On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study

    Get PDF
    We present a 3D hydrodynamic study of the effects that different stellar wind conditions and planetary wind structures have on the calculated Ly-α\alpha absorptions produced during the transit of HD 209458b. Considering a range of stellar wind speeds ∼\sim[350-800] km s−1^{-1}, coronal temperature ∼\sim[3-7] ×106\times10^{6} K and two values of the polytropic index Γ\Gamma ∼\sim[1.01-1.13], while keeping fixed the stellar mass loss rate, we found a that a M˙p\dot M_p range between ∼\sim[3-5] ×1010\times 10^{10}g s−1^{-1} give account for the observational absorption in Ly-α\alpha measured for the planetary system. Also, several models with anisotropic evaporation profiles for the planetary escaping atmosphere were carried out, showing that both, the escape through polar regions and through the night side yields larger absorptions than an isotropic planetary wind

    Photo-ionization of planetary winds: case study HD209458b

    Get PDF
    Close-in hot Jupiters are exposed to a tremendous photon flux that ionizes the neutral escaping material from the planet leaving an observable imprint that makes them an interesting laboratory for testing theoretical models. In this work we present 3D hydrodynamic simulations with radiation transfer calculations of a close-in exoplanet in a blow-off state. We calculate the Ly-α\alpha absorption and compare it with observations of HD 209458b an previous simplified model results.Our results show that the hydrodynamic interaction together with a proper calculation of the photoionization proccess are able to reproduce the main features of the observed Ly-α\alpha absorption, in particular at the blue-shifted wings of the line. We found that the ionizing stellar flux produce an almost linear effect on the amount of absorption in the wake. Varying the planetary mass loss rate and the radiation flux, we were able to reproduce the 10%10\% absorption observed at −100 km s−1-100~\mathrm{km~s^{-1}}.Comment: 9 pages, 6 figure
    corecore