53 research outputs found

    Short-term vertical velocity field in the Appennines (Italy) revealed by geodetic levelling data

    Get PDF
    We estimate current vertical movements along the Apennines (Italy) through repeatedly measured high precision levelling routes. In order to highlight regional crustal deformation the analysis of a geodetic database, with a minimum benchmark density of 0.7 bm/km (1943–2003 time period), is carried out. We evaluate systematic and random error and their propagation along the levelling routes. Tests on original raw height data have been carried out to define error propagation. The computed relative vertical rates stand significantly above error propagation. A series of traverses along and across the Apennines and a map of relative vertical velocities reveal a geodetic signal characterised by values up to 2.5–3.0 mm/a and by wavelengths up to 100 km. © 2006 Elsevier B.V. All rights reserved

    Il Sistema Informativo Territoriale della Rete Integrata Nazionale GPS (RING)

    Get PDF
    Since 2004, an important technological infrastructure has been created in Italy by INGV in order to investigate active tectonics targets. A Continuous GPS network constituted by about 130 stations has been deployed all over Italy. The development and the realization of a stable GPS monumentation, the integration with other classical seismological instruments and the choice of both satellite and internet data transmission make this network one of the most innovative and reliable CGPS networks in the world. The development of the CGPS network has been accompanied by a technologically advanced development of all the aspects related to the data acquisition and the data information mining: a database and a SIT. Based on the recent techniques of Knowledge Management, the database has been developed to manage the data and the data information of all the sites of the RING network, thus allowing us to centralize information in a single common data bank and to create an unique service of access point to the data from different remote sites by internet connections. The SIT has been developed to be fully integrated with the Knowledge Management technology and it is aimed to synthesize and to display in a geographic interface the information of the RING sites. This work has been integrated with all other spatial data, such as topographic and geo-thematic maps, geological, seismological and seismo-tectonic databases. In this work, the technological aspects of the SIT of the RING network will be detailed and some examples of thematic maps will be shown

    Active crustal extension and strain accumulation from GPS data in the Molise region (central-southern Apennines, Italy)

    Get PDF
    In this paper, we report new GPS measurements which indicate active NE-SW extension and strain accumulation in the Molise region (Apennines, Italy). The GPS observations were collected during campaigns on benchmarks of the dense IGM95 network (average distance 20 km), spanning a maximum observation interval of 13 years, and have been integrated with measurements from the available permanent GPS sites. Considering the differential motion of the GPS sites, located on the Tyrrhenian and Adriatic coasts, we can evaluate a 4-5 mm/yr extension accommodated across this part of the Apennines. The velocity field exhibits clusters of sites with homogeneous velocity vectors, outlining two main divergence areas, both characterized by the largest velocity gradients: one near Venafro and the other near Isernia where two primary active faults and several historical earthquakes have been documented. These results suggest that an active extension in this part of the Apennines can be currently distributed between the two faults systems associated with the largest earthquakes of this region

    Coseismic and initial postseismic slip of the 2009 Mw 6.3 l’Aquila earthquake, Italy, from GPS measurements

    Get PDF
    Here we report the preliminary results of GPS data inversions for coseismic and initial afterslip distributions of the Mw 6.3 2009 April 6 L’Aquila earthquake. Coseismic displacements of continuous and survey-style GPS sites, show that the earthquake ruptured a planar SW-dipping normal fault with ∼0.6 m average slip and an estimated moment of 3.9 × 1018 Nm. Geodetic data agree with the seismological and geological information pointing out the Paganica fault, as the causative structure of the main shock. The position of the hypocentre relative to the coseismic slip distribution supports the seismological evidence of southeastward rupture directivity. These results also point out that the main coseismic asperity probably ended downdip of the Paganica village at a depth of few kilometres in agreement with the small (1–10 cm) observed surface breaks. Time-dependent post-seismic displacements have been modelled with an exponential function. The average value of the estimated characteristic times for near-field sites in the hanging-wall of the fault is 23.9 ± 5.4 d. The comparison between coseismic slip and post-seismic displacements for the first 60 d after the main shock, shows that afterslip occurred at the edges of the main coseismic asperity with a maximum estimated slip of ∼25 cm and an equivalent seismic moment of 6.5 × 1017 Nm. The activation of the Paganica fault, spatially intermediate between the previously recognized main active fault systems, suggests that strain accumulation in the central Apennines may be simultaneously active on distinct parallel fault systems.Published1539–15461.1. TTC - Monitoraggio sismico del territorio nazionale1.9. Rete GPS nazionaleJCR Journalrestricte

    Coseismic and post-seismic slip of the 2009 L'Aquila (central Italy) MW 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data

    Get PDF
    After the April 6th 2009 MW 6.3 (ML 5.9) L'Aquila earthquake (central Italy), we re-measured more than 100 km of high-precision levelling lines in the epicentral area. The joint inversion of the levelling measurements with InSAR and GPS measurements, allowed us to derive new coseismic and post-seismic slip distributions and to de- scribe, with high resolution details on surface displacements, the activation and the slip distribution of a second- ary fault during the aftershock sequence that struck the Campotosto area (major event MW 5.2). Coseismic slip on the Paganica fault occurred on one main asperity, while the afterslip distribution shows a more complex pattern, occurring on three main patches, including both slips on the shallow portions and on the deeper parts of the rup- ture plane. The comparison between coseismic and post-seismic slip distributions strongly suggests that afterslip was triggered at the edges of the coseismic asperity. The activation of a segment of the Campotosto fault during the aftershock sequence, with a good correlation between the estimated slipping area, moment release and distribution of aftershocks, raises the opportunity to discuss the local seismic hazard following the occurrence of the 2009 L'Aquila mainshock. The Campotosto fault appears capable of generating earthquakes as large as his- torical events in the region (M N 6.5) or as small as the ones associated with the 2009 sequence. In the case that the Campotosto fault is accumulating a significant portion of the current interseismic deformation, the 2009 MW N 5 events will have released only a small amount of the accumulated elastic strain, and then a significant hazard still remains in the area. Continuing geodetic monitoring and a densification of the GPS networks in the region are therefore needed to estimate the tectonic loading across the different recognized active fault systems in this part of the Apennines.Published168-1852T. Tettonica attivaJCR Journalrestricte

    La Rete Integrata Nazionale GPS (RING): stato dell'arte a due anni dalla nascita

    Get PDF
    Le reti permanenti GPS costituiscono una importante risorsa per una serie di studi tecnologici e scientifici. La carenza di conoscenze in studi di tettonica attiva, che comprendono anche la parte di sismologia come l'accumulo di deformazione sulle faglie, è stata a lungo frenata dalla mancanza di reti permanenti GPS sufficientemente dense distribuite su tutto il territorio nazionale. In particolare, la definizione di una placca Adriatica e la sua terminazione meridionale sono ancora materia di dibattito (Oldow et al., 2002; Battaglia et al. 2004). Inoltre, di recente, alcuni importanti lavori (Hollenstein, et al. 2004; D'Agostino and Selvaggi; Serpelloni et al. 2005) hanno mostrato che valori di deformazione molto più alti di quanto si pensava prima sono stati effettivamente riscontrati nella nostra regione e che solo l'uso di una rete densa di stazioni, quindi di un campionamento ad alta densità nelle aree dove sono maggiori le velocità relative, permette di osservare in modo corretto il rilascio, o accumulo, di deformazione. Infine, il contributo della geodesia alla sismologia sta diventando sempre più importante sia nella definizione del rilascio cosismico durante un terremoto e sia nell'osservazione e modellazione dell'accumulo intersismico di deformazione elastica su faglie attive. Da qualche anno, l'Istituto Nazionale di Geofisica e Vulcanologia (INGV) ha impiegato notevoli risorse e sforzi per rispondere a tali temi scientifici. Selvaggi et al. (2006) hanno gettato le basi e mostrato i primi sviluppi di una rete GPS permanente, la Rete Integrata Nazionale GPS (RING), creata con l'obiettivo di dare un forte contributo scientifico ai temi sopra citati La rete RING (Fig. 1a), nella sua completezza, rappresenta ad oggi non solo un punto di riferimento per studi di carattere scientifico ma anche una robusta infrastruttura tecnologica e informatica per l'archiviazione dei dati GPS per diverse altre reti locali e regionali (Regione Puglia, Regione Friuli, Leica Geosystems). Tali reti, contribuiscono quotidianamente all'acquisizione, all'interno di un server, di dati per un totale di oltre 300 stazioni distribuite sul territorio nazionale (Fig. 1b). Se, poi, si considera anche l'aspetto del processamento dei dati GPS, l'utilizzo di dati GPS appartenenti ad altre reti (locali, regionali o anche esterne al territorio italiano) fa sì che ogni analista utilizzi i dati, in media, di circa 650 stazioni GPS permanenti al giorno.PublishedL'Aquila - Italia1.9. TTC - Rete GPS nazionalereserve

    La Rete Integrata Nazionale GPS (RING) dell' INGV: una infrastruttura aperta per la ricerca scientifica

    Get PDF
    Since 2004, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is investing important energies for the creation of a continuous GPS network dislocated all over the Italian territory. Data transmission will occur in real time, integrating the experiences already existing in the different INGV institutes and developing a 3-yrs strategy for the new installations. The main targets of the network are represented by active tectonics studies, including also the seismological part as strain accumulation on faults. Within a 3-yrs funding project, it is expected, to realize for the scientific community an infrastructure which is comparable to those existing in countries where advanced crustal deformation studies are carried out. Thus, INGV have co-located the classical seismological instrumentation (broad band seismometers and accelerometers) with GPS receivers to observe and quantify the whole seismic cycle. In this short paper, we describe the CGPS network, the technological choices for the monumentation and the data transmission, the data and metadata management and, finally, the data policy and the deliverables.INGVUnpublishedreserve

    The RING network: improvements to a GPS velocity field in the central Mediterranean

    Get PDF
    Since 2004, a continuous Global Positioning System (GPS) network has been operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) to investigate active tectonic processes in Italy and the surrounding regions, which are still largely debated. This important infrastructure is known as Rete Integrata Nazionale GPS (RING) network, and it consists of about 130 stations that are deployed all over Italy. The development and realization of a stable GPS monumentation, its integration with seismological instruments, and the choice of both satellite and internet data transmission, make this network one of the most innovative and reliable CGPS networks in the world. The technologically advanced development of the RING network has been accompanied by the development of different data processing strategies, which are mainly dependent on the use of different GPS analysis software. The different software-related solutions are here compared at different scales for this large network, and the consistency is evaluated and quantified within an RMS value of 0.3 mm/yr

    Le reti sismica e geodetica di pronto intervento dell’INGV: un primo impiego a seguito del terremoto de L’Aquila del 6 aprile 2009

    Get PDF
    Durante gli ultimi due anni l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) ha sviluppato un importante infrastruttura di pronto intervento (la Rete Mobile Real-Time di Pronto Intervento), al fine di incrementare il numero di stazioni della Rete Sismica Nazionale dell’INGV (RSN) in zona epicentrale a seguito di eventi sismici rilevanti. Gli obiettivi principali della Rete Mobile Real-Time di Pronto Intervento sono il miglioramento delle localizzazioni epicentrali calcolate dalla Sala di Monitoraggio dell’INGV e l’abbassamento della soglia di detezione della micro-sismicità in area epicentrale durante una sequenza sismica. La Rete Mobile Real-Time di Pronto Intervento è composta da stazioni sismiche remote i cui dati sono telemetrati tramite ponte radio UHF (Ultra High Frequency) presso dei centri d’acquisizione intermedi (definiti “sottonodi”). I sottonodi sono a loro volta connessi tramite Wi-Fi ad un “centro stella” (nodo), ove è situato un sistema di trasmissione satellitare (Libra VSAT Nanometrics), tramite il quale vengono inviati i dati in tempo reale al centro acquisizione della Sala di Monitoraggio dell’INGV di Roma. L’acquisizione dati è ridondata inoltre presso la sala Disaster Recovery dell’Osservatorio di Grottaminarda. Il sistema d’acquisizione di dati sismici è costituito da un datalogger a tre canali, equipaggiato con un convertitore AD ad alta risoluzione (a 24 bit), dotato di un clock di precisione basato su timing GPS. I sensori sismici utilizzati presso le stazioni remote sono accelerometri Episensor FBA ES-T (Kinemetrics) con fondo scala a 2G e velocimetri a corto periodo (Lennartz Le Lite 3D). Il sistema di trasmissione dati, come accennato, si avvale di diversi apparati installati presso le stazioni remote, i sottonodi, ed il centro stella. Presso le stazioni remote è installato un radio modem operante in banda UHF (da 380 a 470 MHz), per il trasferimento trasparente di dati asincroni in modalità half-duplex. L’apparato modula in etere a 9.600 bps, realizzando collegamenti da 2 a 50 chilometri, in funzione dell’orografia locale e del sistema d’antenna utilizzato. Presso i sottonodi viene utilizzato un apparato WiFi (Wireless Fidelity) operante con frequenza di 2.4 GHz per collegamenti IP fino a 54 Mbit/s. Presso i sottonodi i dati sismici ricevuti dalle stazioni remote vengono inviati, tramite ponte Wi-Fi, al centro stella. Presso il centro stella la trasmissione dati avviene tramite il ricetrasmettitore Cygnus Nanometrics. Esso permette l’invio dei dati ricevuti alla Sala di Monitoraggio tramite collegamento satellitare. Il protocollo di trasmissione satellitare dedicato sul link VSAT è di tipo IP, ma può avvenire anche su apparati esterni quali fibra ottica, linee telefoniche, ecc. Per conseguire una maggiore flessibilità d’impiego, tale sistema dispone di due differenti frequenze di trasmissione, disponibili su satellite Intelsat ed HellaSat. Tutto ciò permette di orientare la parabola in due diverse direzioni, in modo da poter ovviare l’eventuale presenza di ostacoli come alberi, montagne o edifici. L’intera struttura racchiude queste tre diverse tecnologie di trasmissione dati (UHF, Wi-Fi e satellitare) al fine di garantire maggiore flessibilità di utilizzo; questo permette di affrontare l’emergenza sismica in tutte le condizioni logistiche e/o meteorologiche mirando a rapidi tempi di intervento (raggiungimento della zona epicentrale e istallazione). L’installazione della Rete Mobile Real-Time di Pronto Intervento viene gestita e coordinata all’interno di un Sistema Informativo Geografico (GIS) che consente la scelta della disposizione geografica ottimale delle stazioni della rete di pronto intervento intorno all’area epicentrale. Il database geografico utilizzato durante l’emergenza sismica contiene informazioni territoriali di vario tipo in area epicentrale. L’INGV dispone infatti di database geografici contenenti dati territoriali di tutto il territorio nazionale le cui categorie, utili ai fini della gestione dell’emergenza sismica, sono: Ubicazione delle stazioni delle reti di monitoraggio; Cartografia topografica IGM (1:25000, 1:50000, 1:100000); Modello digitale del terreno IGM; Uso del suolo; Viabilità e grafo stradale; Catologhi di sismicità storica e strumentale; Mappe di pericolosità sismica e del territorio; Database delle Sorgenti sismogenetiche; Mappe di scuotimento; Mappe di osservazioni macrosismiche. I dati sopra elencati sono utilizzati per la realizzazione di analisi di superficie (surface spatial analysis, Viewshed, Observer Point) che consentono la produzione di scenari utili per l’individuazione delle aree più favorevoli alla collocazione degli apparati della rete Real Time. Il terremoto de L’Aquila del 6 aprile 2009 è stato il primo caso di utilizzo dell’intera infrastruttura di pronto intervento. A meno di 6 ore dalla scossa principale (Mw 6.3 delle ore 01:32 GMT) il primo accelerometro inviava già dati alla Sala di Monitoraggio dell’INGV di Roma. A 3 giorni dall’evento la struttura di pronto intervento installata era costituita da 9 stazioni sismiche real-time. Oltre alla Rete Real Time di Pronto Intervento l’INGV ha installato 5 nuove stazioni GPS permanenti nel territorio abruzzese a seguito dell’evento del 6 aprile (Fig. 3). Le stazioni GPS permanenti presenti nel settore aquilano precedentemente al terremoto erano infatti caratterizzate da un’interdistanza troppo elevata, tale da non consentire una risoluzione spaziale adeguata del campo di spostamento co- e postsismico. A poche ore di distanza dall’evento sismico del 6 aprile si è quindi attivata una squadra di pronto intervento dell’INGV coadiuvata anche da personale del DPC-Ufficio Sismico e dell’ISPRA. A partire dal 7 aprile 2009, e fino al 17 dello stesso mese, sono state installate 5 nuove stazioni GPS permanenti (3 stazioni appartenenti alla Rete Integrata Nazionale GPS dell’INGV, 1 stazione del DPC-Ufficio Sismico ed una stazione dell’ISPRA) nei settori limitrofi all’epicentro della scossa principale della sequenza dell’aquilano. In tutte e 5 i casi la stazione GPS è stata monumentata, installata e avviata nell’arco di 5-6 ore. Su tutte le stazioni GPS è stata impostata sia un’acquisizione del dato GPS a 30 secondi sia un ringbuffer con campionamento a 10 Hz, in modo da permettere la registrazione dell’intera deformazione cosismica (sia statica che dinamica) in caso di ulteriore evento sismico. Nelle settimane successive è stata poi ottimizzata la trasmissione dei dati GPS, utilizzando un sistema di trasmissione dati via GPRS/UMTS implementato dal ST-Osservatorio di Grottaminarda.PublishedTrieste- Italy1.1. TTC - Monitoraggio sismico del territorio nazionaleope

    The RING GPS network: a research geodetic infrastructure to study plate boundary deformation in the Central Mediterranean

    Get PDF
    We present the INGV (Italian National Institute of Geophysics and Volcanology) geodetic research infrastructure and related facilities, dedicated to the observation and monitoring of current deformation of the plate boundary between Africa and Eurasia. The recent increase of continuous GPS (CGPS) stations in the Central Mediterranean plate boundary zone offers the opportunity to study in detail the present-day kinematics of this actively deforming region. For answering all the open questions related to this complex area, INGV deployed a permanent, integrated and real-time monitoring CGPS network (RING) all over Italy. The RING network (http:/ring.gm.ingv.it) is now constituted by more than 150 stations. All stations have high quality GPS monuments and most of them are co-located with broadband or very broadband seismometers and strong motion sensors. The RING CGPS sites acquire at 1Hz and 30s sampling rates (some of them acquire at 10 Hz) and are connected in real-time to the INGV acquisition centers located in Roma and Grottaminarda. Real-time GPS data are transmitted using different systems, such as satellite systems, Internet, GPRS/UMTS and wireless networks. The differentiation of data transmission type and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. Furthermore, the INGV data acquisition centers acquire, archive and analyze most of the Italian CGPS stations managed by regional or national data providers (such as local Authorities and nation-wide industries), integrating more than 350 stations of the CGPS scientific and commercial networks existing in the Italian region. To manage data acquisition, storage, distribution and access we developed dedicated facilities including new softwares for data acquisition and a web-based collaborative environment for management of data and metadata. The GPS analysis is carried out with the three main geodetic-quality softwares used in the GPS scientific community: Bernese GAMIT an GIPSY-OASIS. The resulting daily solutions are aligned to the ITRF2005 reference frame. Stable plate reference frames are realized by minimizing the horizontal velocities at sites on the Eurasia and Nubia plates, respectively. The different software-related solutions consistency RMS is within 0.3 mm/yr (Avallone et al., 2010). The solutions are then evaluated with regard to the numerous scientific motivations behind this presentation, ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults. The RING network is strongly contributing to the definition of GPS velocity field in the Italian region, and now is able to furnish a newly and up to date view of this actively deforming part of the Nubia-Eurasia plate boundary. INGV is now aiming to make the RING (and integrated CGPS networks) data and related products publicly available for the scientific community. We believe that our network represents an important reality in the framework of the EPOS infrastructure and we strongly support the idea of an European research approach to data sharing among the scientific community. We will present (a) the current CGPS site distribution, (b) the technological description of the data acquisition, storage and distribution at INGV centers, (c) the results of CGPS data analysis, and (d) the planned data access for the scientific community.PublishedVienna, Geophysical Research Abstracts Vol. 13, EGU2011-8626, 20111.9. Rete GPS nazionale3.2. Tettonica attivaope
    corecore