5 research outputs found

    Polyphenon E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Note: In this manuscript as well as in the original published version of this article the word "Polyphenon" was incorrectly spelled in the title as "Polyphenol."Purpose: Neuroblastoma is a rare childhood cancer whose high risk, metastatic form has a dismal outcome in spite of aggressive therapeutic interventions. The toxicity of drug treatments is a major problem in this pediatric setting. In this study, we investigated whether Polyphenon E, a clinical grade mixture of green tea catechins under evaluation in multiple clinical cancer trials run by the National Cancer Institute (Bethesda, MD), has anticancer activity in mouse models of neuroblastoma. Experimental Design: We used three neuroblastoma models: (i) transgenic TH-MYCN mouse developing spontaneous neuroblastomas; (ii) nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice xenotransplanted with human SHSY5Y cells; and (iii) A/J mice transplanted with syngeneic Neuro 2A cells. Mice were randomized in control and Polyphenon E–drinking groups. Blood from patients with neuroblastoma and normal controls was used to assess the phenotype and function of myeloid cells. Results: Polyphenon E reduced the number of tumor-infiltrating myeloid cells, and inhibited the development of spontaneous neuroblastomas in TH-MYCN transgenic mice. In therapeutic models of neuroblastoma in A/J, but not in immunodeficient NOD/SCID mice, Polyphenon E inhibited tumor growth by acting on myeloid-derived suppressor cells (MDSC) and CD8 T cells. In vitro, Polyphenon E impaired the development and motility of MDSCs and promoted differentiation to more neutrophilic forms through the 67 kDa laminin receptor signaling and induction of granulocyte colony-stimulating factor. The proliferation of T cells infiltrating a patient metastasis was reactivated by Polyphenon E. Conclusions: These findings suggest that the neuroblastoma-promoting activity of MDSCs can be manipulated pharmacologically in vivo and that green tea catechins operate, at least in part, through this mechanism.SPARKS, Research in Childhood Cancer, the CGD Research Trust, and the Wellcome Trust

    Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months

    Get PDF
    Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10(-8)-10(-6) M) or polyethylene glycol (PEG, molecular weight similar to 8,000 Da, 10(-7)-10(-4) M) increase the half-life of a green fluorescent protein expressing adenovirus from similar to 48 h to 21 days at 37 degrees C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 degrees C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step

    Virucidal metallic nanoparticles and uses thereof

    No full text
    The invention relates to virucidal metallic nanoparticles, virucidal compositions comprising thereof and uses thereof in treatment and/or prevention of viral infections, for sterilizations and for disinfections
    corecore